Next| Up| F’reviﬂu5|

Next: Preface

Introduction to
Object-Oriented Programming
Using C++

Peter Mller
pmueller @uu-gna.mit.edu

Globewide Network Academy (GNA)
www. gnacadeny. or g/

August 31, 1997

. Preface
. 1lIntroduction
. 2 A Survey of Programming Technigques
o 2.1 Unstructured Programming
o 2.2 Procedural Programming
o 2.3 Modular Programming
o 2.4 An Example with Data Structures
« 2.4.1 Handling Single Lists
« 2.4.2 Handling Multiple Lists
o 2.5 Modular Programming Problems
« 2.5.1 Explicit Creation and Destruction
« 2.5.2 Decoupled Data and Operations
« 2.5.3 Missing Type Safety
« 2.5.4 Strategies and Representation
o 2.6 Object-Oriented Programming
o 2.7 Exercises
. 3 Abstract Data Types
o 3.1 Handling Problems
o 3.2 Properties of Abstract Data Types
« Importance of Data Structure Encapsulation
o 3.3 Generic Abstract Data Types
o 3.4 Notation
o 3.5 Abstract Data Types and Object-Orientation
o 3.6 Excercises
« 4 Object-Oriented Concepts
o 4.1 Implementation of Abstract Data Types
o 4.2 Class
o 4.4 Message

o 4.5 Summary
o 4.6 Exercises

. 5 More Object-Oriented Concepts

http://www.gnacademy.org/

o 5.1 Relationships
« A-Kind-Of relationship
« ISA relationship
« Part-Of relationship
« Has-A relationship
o 5.2 Inheritance
o 5.3 Multiple Inheritance
o 5.4 Abstract Classes
o 5.5 Exercises
. 6 Even More Object-Oriented Concepts
o 6.1 Generic Types
o 6.2 Static and Dynamic Binding
o 6.3 Polymorphism
. 7 Introductionto C++
o 7.1 The C Programming L anguage
« 7.1.1 DataTypes
« 7.1.2 Statements
« 7.1.3 Expressions and Operators
« 7.1.4 Functions
« 7.1.5 Pointers and Arrays
« 7.1.6 A First Program
o 7.2 What Next?
. 8FromCTo C++
v 8.1 Basic Extensions
« 8.1.1 DataTypes
« 8.1.2 Functions
o 8.2 First Object-oriented Extensions
« 8.2.1 Classes and Objects
« 8.2.2 Constructors
» 8.2.3 Destructors
. 9Moreon C++
o 9.1 Inheritance
« 9.1.1 Types of Inheritance
« 9.1.2 Construction
« 9.1.3 Destruction
« 9.1.4 Multiple Inheritance
o 9.2 Polymorphism
o 9.3 Abstract Classes
o 9.4 Operator Overloading
o 9.5 Friends
o 9.6 How to Write a Program
« 9.6.1 Compilation Steps
« 9.6.2 A Note about Style
o 9.7 Excercises
. 10ThelList - A Case Study
o 10.1 Generic Types (Templates)
o 10.2 Shape and Traversal
o 10.3 Properties of Singly Linked Lists
o 10.4 Shape Implementation
« 10.4.1 Node Templates
« 10.4.2 List Templates
o 10.5 Iterator Implementation
o 10.6 Example Usage
o 10.7 Discussion
« 10.7.1 Separation of Shape and Access Strategies

« 10.7.2 Iterators
o 10.8 Exercises
. References
. A Solutions to the Exercises
o A.1A Survey of Programming Techniques
o A.2 Abstract Data Types
o A.3 Object-Oriented Concepts
o A.4 More Object-Oriented Concepts
o A.5Moreon C++
o A.6ThelList- A Case Study
. About this document ...

Ne:-:t| Up| Previous

Next: Preface

P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Next: 1 Introduction Up: Introduction to Object-Oriented Programming Previous: Introduction to Object-Oriented Programming

Preface

Thefirst course Object-Oriented Programming Using C++ was held in Summer 1994 and was based on asimple ASCII tutorial.
After acall for participation, severa highly motivated people from all over the world joined course coordinator Marcus Speh as
consultants and had pushed the course to its success. Besides of the many students who spend lots of their time to help doing
organizational stuff.

Then, the " bomb". The original author of the used ASCI| tutorial stands on his copyright and denies us to reuse his work.
Unfortunately, Marcus was unable to spend more time on this project and so the main driving force was gone.

My experiences made as consultant for this first course have lead to my decision that the course must be offered again. So, in
Summer 1995 I've just announced a second round, hoping that somehow a new tutorial could be written. Well, here is the result. |
hope, that you find this tutorial useful and clear. If not, please send me anote. The tutorial isintended to be a group work and not a
work of one person. It is essential, that you express your comments and suggestions.

The course and the tutorial could have only been realized with help of many people. | wish to thank the people from the Globewide
Network Academy (GNA), especially Joseph Wang and Susanne Reading.

Ricardo Nassif and David Klein provide me with suggestions to improve the readability of the tutorial.

The complete tutorial is available free of charge in PostScript in both US letter and DIN A4 paper formats. Please check out http://
www.zib.de/mueller/Course/Tutorial/Postscript/ .

Berlin, Germany
Peter Mller

Ne:-:t| Up| Previous

Next: 1 Introduction Up: Introduction to Object-Oriented Programming Previous: |ntroduction to Object-Oriented Programming

P. Mueller
8/31/1997

http://www.zib.de/mueller/Course/Tutorial/Postscript/
http://www.zib.de/mueller/Course/Tutorial/Postscript/

Next| Up| F’reviﬂu5|

Next: 2 A Survey of Up: Introduction to Object-Oriented Programming Previous: Preface

1 Introduction

Thistutorial isa collection of lectures to be held in the on-line course Introduction to Object-Oriented Programming Using C++ .
In this course, object-orientation is introduced as a new programming concept which should help you in developing high quality
software. Object-orientation is aso introduced as a concept which makes developing of projects easier. However, thisis not a course
for learning the C++ programming language. If you are interested in learning the language itself, you might want to go through other
tutorials, such as C++: Annotations by Frank Brokken and Karel Kubat. In thistutorial only those language concepts that are needed

to present coding examples are introduced. And what makes object-orientation such a hot topic? To be honest, not everything that is
sold under the term of object-orientation isreally new. For example, there are programs written in procedural languages like Pascal
or C which use object-oriented concepts. But there exist a few important features which these languages won't handle or won't handle
very well, respectively.

Some people will say that object-orientation is ™ modern”. When reading announcements of new products everything seemsto be
““object-oriented”. “"Objects" are everywhere. In this tutorial we will try to outline characteristics of object-orientation to allow you
to judge those object-oriented products.

Thetutorial is organized as follows. Chapter 2 presents a brief overview of procedural programming to refresh your knowledgein
that area. Abstract data types are introduced in chapter 3 as afundamental concept of object-orientation. After that we can start to
define general terms and beginning to view the world as consisting of objects (chapter 4). Subsequent chapters present fundamental
object-oriented concepts (chapters 5 and 6). Chapters 7 through 9 introduce C++ as an example of an object-oriented programming
language which isin wide-spread use. Finally chapter 10 demonstrates how to apply object-oriented programming to areal example.

Next| L_Jp| Previous

Next: 2 A Survey of Up: Introduction to Object-Oriented Programming Previous: Preface

P. Mueller
8/31/1997

http://www.zib.de/mueller/Course/
http://www.icce.rug.nl/docs/cpp.html

Next| Up| F’reviﬂu5|

Next: 3 Abstract Data Types Up: Introduction to Object-Oriented Programming Previous: 1 Introduction

Subsections

. 2.1 Unstructured Programming

. 2.2 Procedura Programming

. 2.3 Modular Programming

. 2.4 An Example with Data Structures
o 2.4.1 Handling Single Lists
o 2.4.2 Handling Multiple Lists

. 2.5 Modular Programming Problems
o 2.5.1 Explicit Creation and Destruction
o 2.5.2 Decoupled Data and Operations
o 2.5.3 Missing Type Safety
o 2.5.4 Strategies and Representation

. 2.6 Object-Oriented Programming

. 2.7 Exercises

2 A Survey of Programming Techniques

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

This chapter is ashort survey of programming techniques. We use a simple example to illustrate the particular properties and to point
out their main ideas and problems.

Roughly speaking, we can distinguish the following learning curve of someone who learns to program:

. Unstructured programming,

. procedural programming,

. modular programming and

. object-oriented programming.

This chapter is organized as follows. Sections 2.1 to 2.3 briefly describe the first three programming techniques. Subsequently, we
present a simple example of how modular programming can be used to implement asingly linked list module (section 2.4). Using
this we state afew problems with this kind of technique in section 2.5. Finally, section 2.6 describes the fourth programming
technique.

2.1 Unstructured Programming

Usually, people start learning programming by writing small and simple programs consisting only of one main program. Here
““main program" stands for a sequence of commands or statements which modify datawhich is global throughout the whole
program. We can illustrate this as shown in Fig. 2.1.

mailto:pmueller@uu-gna.mit.edu

Figure 2.1: Unstructured
programming. The main program
directly operates on global data.

program

main program

elertel

Asyou should al know, this programming techniques provide tremendous disadvantages once the program gets sufficiently large.
For example, if the same statement sequence is needed at different locations within the program, the sequence must be copied. This
has |ead to the idea to extract these sequences, name them and offering atechnique to call and return from these procedures.

2.2 Procedural Programming

With procedural programming you are able to combine returning sequences of statementsinto one single place. A procedure call is

used to invoke the procedure. After the sequence is processed, flow of control proceeds right after the position where the call was
made (Fig. 2.2).

Figure 2.2: Execution of
procedures. After processing flow
of controls proceed where the call

was made.

main program procedurs

With introducing parameters as well as procedures of procedures (subprocedures) programs can now be written more structured and
error free. For example, if aprocedureis correct, every timeit is used it produces correct results. Consequently, in cases of errors you
can narrow your search to those places which are not proven to be correct.

Now a program can be viewed as a sequence of procedure cal Isjg. The main program is responsible to pass data to the individual
cals, the data is processed by the procedures and, once the program has finished, the resulting data is presented. Thus, the flow of
data can beillustrated as a hierarchical graph, atree, as shown in Fig. 2.3 for a program with no subprocedures.

Figure 2.3: Procedura programming. The main
program coordinates calls to procedures and hands over
appropriate data as parameters.

program

main program
|':-|r|'.|'f|'.|'

procedure, |

To sum up: Now we have a single program which is devided into small pieces called procedures. To enable usage of genera
procedures or groups of procedures also in other programs, they must be separately available. For that reason, modular programming
allows grouping of procedures into modules.

2.3 Modular Programming

With modular programming procedures of a common functionality are grouped together into separate modules. A program
therefore no longer consists of only one single part. It is now devided into several smaller parts which interact through procedure
calls and which form the whole program (Fig. 2.4).

Figure 2.4: Modular programming. The main program coordinates calls to
procedures in separate modules and hands over appropriate data as parameters.

program

-
main program
deita
module | module 5
eletter +.5f.'.!?'.'.!f eletter +.5f.-.!?.'.!2
||:|L'|::-v:1:-:lL1|:c_,I ||:!'L'DC c-:lul:%l
o

Each module can have its own data. This allows each module to manage an internal state which is modified by calls to procedures of
this module. However, there is only one state per module and each module exists at most once in the whole program.

2.4 An Example with Data Structures

Programs use data structures to store data. Several data structures exist, for example lists, trees, arrays, sets, bags or queues to name
afew. Each of these data structures can be characterized by their structure and their access methods.

2.4.1 Handling Single Lists

You al know singly linked lists which use avery simple structure, consisting of elements which are strung together, as shown in
Fig. 2.5).

Figure 2.5: Structure of asingly linked list.

Singly linked lists just provides access methods to append a new element to their end and to delete the element at the front. Complex
data structures might use already existing ones. For example a queue can be structured like a singly linked list. However, queues
provide access methods to put a data element at the end and to get the first data element (first-in first-out (FIFO) behaviour).

We will now present an example which we use to present some design concepts. Since this exampleisjust used to illustrate these
concepts and problemsiit is neither complete nor optimal. Refer to chapter 10 for a complete object-oriented discussion about the
design of data structures.

Suppose you want to program alist in amodular programming language such as C or Modula-2. Asyou believe that listsare a
common data structure, you decide to implement it in a separate module. Typically, this requires you to write two files: the interface
definition and the implementation file. Within this chapter we will use avery simple pseudo code which you should understand
immediately. Let's assume, that comments are enclosed in ™*/* ... */". Our interface definition might then look similar to that below:

/-k
* Interface definition for a nodul e which inplenents
* asingly linked Iist for storing data of any type.
*/

MODULE Si ngl y- Li nked-List-1

BOOL list_initialize();

BOOL |ist_append(ANY dat a);

BOOL |ist_delete();
[ist_end();

ANY list getFirst();
ANY |ist_get Next();
BOOL list_isEmpty();

END Si ngl y-Li nked-List-1

Interface definitions just describe what is available and not how it is made available. Y ou hide the information of the implementation
in the implementation file. Thisis afundamental principle in software engineering, so let's repest it: Y ou hide information of the
actual implementation (information hiding). This enables you to change the implementation, for example to use a faster but more
memory consuming algorithm for storing elements without the need to change other modules of your program: The calls to provided
procedures remain the same.

Theideaof thisinterfaceis asfollows: Before using the list one hasto call list_initialize() to initialize variables local to the module.
The following two procedures implement the mentioned access methods append and del ete. The append procedure needs a more
detailed discussion. Function list_append() takes one argument data of arbitrary type. Thisis necessary since you wish to use your
list in several different environments, hence, the type of the data elementsto be stored in the list is not known beforehand.

Consequently, you have to use a specia type ANY which allowsto assign data of any typeto itlg. The third procedure list_end()
needs to be called when the program terminates to enable the module to clean up itsinternally used variables. For example you might

want to release allocated memory.

With the next two procedures list_getFirst() and list_getNext() a simple mechanism to traverse through the list is offered. Traversing
can be done using the following loop:

ANY dat a;

data <- list_getFirst();
VWH LE data IS VALI D DO
doSonet hi ng(dat a) ;
data <- list_getNext();
END

Now you have alist module which allows you to use alist with any type of data elements. But what, if you need more than onelist in
one of your programs?

2.4.2 Handling Multiple Lists

Y ou decide to redesign your list module to be able to manage more than one list. Y ou therefore create a new interface description
which now includes a definition for alist handle. This handleis used in every provided procedure to uniquely identify thelist in
question. Y our interface definition file of your new list module looks like this:

/*
* Alist nodule for nbre than one |ist.
*/

MODULE Si ngl y- Li nked-List-2

DECLARE TYPE |ist_handl e_t;

list _handle_t list _create();
list _destroy(list _handle_ t this);

BOOL list_append(list_handle_t this, ANY data);
ANY list getFirst(list_handle t this);

ANY list _getNext(list _handle_ t this);

BOOL list isEnpty(list_handle_ t this);

END Si ngl y- Li nked- Li st - 2;

Y ou use DECLARE TYPE to introduce a new type list_handle_t which represents your list handle. We do not specify, how this
handle is actually represented or even implemented. Y ou also hide the implementation details of this type in your implementation
file. Note the difference to the previous version where you just hide functions or procedures, respectively. Now you also hide
information for an user defined datatype called list_handle t.

You uselist_create() to obtain a handle to a new thus empty list. Every other procedure now contains the special parameter this
which just identifies the list in question. All procedures now operate on this handle rather than a module global list.

Now you might say, that you can create list objects. Each such object can be uniquely identified by its handle and only those methods
are applicable which are defined to operate on this handle.

2.5 Modular Programming Problems

The previous section shows, that you aready program with some object-oriented concepts in mind. However, the example implies
some problems which we will outline now.

2.5.1 Explicit Creation and Destruction

In the example every time you want to use alist, you explicitly have to declare a handle and perform acall to list_create() to obtain a
valid one. After the use of thelist you must explicitly call list_destroy() with the handle of the list you want to be destroyed. If you
want to use alist within a procedure, say, foo() you use the following code frame:

PROCEDURE foo() BEG N
list _handl e t myList;
nyList <- list _create();

/* Do sonething with nyList */

list _destroy(nyList);
END

Let's compare the list with other data types, for example an integer. Integers are declared within a particular scope (for example
within a procedure). Once you've defined them, you can use them. Once you leave the scope (for example the procedure where the
integer was defined) the integer islost. It is automatically created and destroyed. Some compilers even initialize newly created
integers to a specific value, typically 0 (zero).

Where isthe differenceto list ““objects'? Thelifetime of alist is also defined by its scope, hence, it must be created once the scopeis
entered and destroyed once it is left. On creation time alist should be initialized to be empty. Therefore we would like to be able to
define alist similar to the definition of an integer. A code frame for this would look like this:

PROCEDURE foo() BEG N
[ist_handle_t nyList; /* List is created and initialized */

/* Do sonething with the myList */

END /* nyList is destroyed */

The advantage is, that now the compiler takes care of calling initialization and termination procedures as appropriate. For example,
this ensures that the list is correctly deleted, returning resources to the program.

2.5.2 Decoupled Data and Operations

Decoupling of data and operations leads usually to a structure based on the operations rather than the data: Modules group common
operations (such asthoselist_...() operations) together. Y ou then use these operations by providing explicitly the data to them on
which they should operate. The resulting module structure is therefore oriented on the operations rather than the actual data. One
could say that the defined operations specify the data to be used.

In object-orientation, structure is organized by the data. Y ou choose the data representations which best fit your requirements.
Consequently, your programs get structured by the data rather than operations. Thus, it is exactly the other way around: Data
specifies valid operations. Now modules group data representations together.

2.5.3 Missing Type Safety

In our list example we have to use the special type ANY to allow thelist to carry any datawe like. Thisimplies, that the compiler
cannot guarantee for type safety. Consider the following example which the compiler cannot check for correctness:

PROCEDURE foo() BEG N
SoneDat aType dat al;
SonmeQ her Type dat a2;
list_handle_t myList;

nyList <- list_create();
i st_append(nyList, datal);

list_append(nyList, data2); /* Qops */

list_destroy(nyList);
END

Itisin your responsibility to ensure that your list is used consistently. A possible solution isto additionally add information about the
type to each list element. However, thisimplies more overhead and does not prevent you from knowing what you are doing.

What we would like to have is a mechanism which allows us to specify on which data type the list should be defined. The overall
function of thelist is always the same, whether we store apples, numbers, cars or even lists. Therefore it would be nice to declare a
new list with something like:

list _handle t<Apple> listl; /* a list of apples */
list handle t<Car> list2; /* a list of cars */

The corresponding list routines should then automatically return the correct data types. The compiler should be able to check for type
consistency.

2.5.4 Strategies and Representation

The list example implies operations to traverse through the list. Typically a cursor isused for that purpose which points to the
current element. Thisimplies atraversing strategy which defines the order in which the elements of the data structure are to be
visited.

For asimple data structure like the singly linked list one can think of only one traversing strategy. Starting with the leftmost element
one successively visits the right neighbours until one reaches the last element. However, more complex data structures such as trees
can be traversed using different strategies. Even worse, sometimes traversing strategies depend on the particular context in which a
data structure is used. Consequently, it makes sense to separate the actual representation or shape of the data structure from its
traversing strategy. We will investigate thisin more detail in chapter 10.

What we have shown with the traversing strategy applies to other strategies as well. For example insertion might be done such that
an order over the elementsis achieved or not.

2.6 Object-Oriented Programming

Object-oriented programming solves some of the problems just mentioned. In contrast to the other techniques, we now have aweb
of interacting objects, each house-keeping its own state (Fig. 2.6).

Figure 2.6: Object-oriented programming. Objects of the program interact by
sending messages to each other.

program

object;

data ‘L\—_‘__h_ object,

data
\ ad

objecy
data

objecs
data

Consider the multiple lists example again. The problem here with modular programming is, that you must explicitly create and
destroy your list handles. Then you use the procedures of the module to modify each of your handles.

In contrast to that, in object-oriented programming we would have as many list objects as needed. Instead of calling a procedure
which we must provide with the correct list handle, we would directly send a message to the list object in question. Roughly
speaking, each object implements its own module allowing for example many lists to coexist.

Each object isresponsible to initialize and destroy itself correctly. Consequently, there is no longer the need to explicitly call a
creation or termination procedure.

Y ou might ask: So what? Isn't this just a more fancier modular programming technique? Y ou were right, if thiswould be al about
object-orientation. Fortunately, it is not. Beginning with the next chapters additional features of object-orientation are introduced
which makes object-oriented programming to a new programming technique.

2.7 Exercises

1
The list examples include the specia type ANY to allow alist to carry data of any type. Suppose you want to write a
module for a specialized list of integers which provides type checking. All you have is the interface definition of module
Sngly-Linked-List-2.
@
How does the interface definition for amodule Integer-List look like?
(b)
Discuss the problems which are introduced with using type ANY for list elements in module Singly-Linked-List-2.
(©
What are possible solutions to these problems?
2.

What are the main conceptual differences between object-oriented programming and the other programming techniques?

If you are familiar with amodular programming language try to implement module Sngly-Linked-List-2. Subsequently,
implement alist of integers and alist of integer lists with help of this module.

Next| Up| F’reviﬂu5|

Next: 3 Abstract Data Types Up: Introduction to Object-Oriented Programming Previous: 1 Introduction

P. Mudller
8/31/1997

Next| Up| F’reviﬂu5|

Next: 4 Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 2 A Survey of

Subsections

. 3.1 Handling Problems
. 3.2 Properties of Abstract Data Types
o Importance of Data Structure Encapsulation
. 3.3 Generic Abstract Data Types
. 3.4 Notation
. 3.5 Abstract Data Types and Object-Orientation
. 3.6 Excercises

3 Abstract Data Types

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

Some authors describe object-oriented programming as programming abstract data types and their relationships. Within this section
we introduce abstract data types as a basic concept for object-orientation and we explore concepts used in the list example of the last
section in more detail.

3.1 Handling Problems

The first thing with which one is confronted when writing programsis the problem. Typically you are confronted with ““real-life"
problems and you want to make life easier by providing a program for the problem. However, real-life problems are nebulous and
the first thing you have to do isto try to understand the problem to separate necessary from unnecessary details. Y ou try to obtain
your own abstract view, or model, of the problem. This process of modeling is called abstraction and isillustrated in Figure 3.1.

Figure 3.1: Create amodel from a problem
with abstraction.

mailto:pmueller@uu-gna.mit.edu

Problem

Abstraction

Model

The model defines an abstract view to the problem. Thisimplies that the model focusses only on problem related stuff and that you
try to define properties of the problem. These properties include

. the data which are affected and
. the operations which are identified

by the problem.

As an example consider the administration of employeesin an ingtitution. The head of the administration comes to you and ask you
to create a program which allows to administer the employees. Well, thisis not very specific. For example, what employee
information is needed by the administration? What tasks should be allowed? Employees are real persons who can be characterized
with many properties; very few are:

. name,
. Size,

. dateof birth,
. shape,

. socia number,
. room number,
. hair colour,

. hobbies.

Certainly not all of these properties are necessary to solve the administration problem. Only some of them are problem specific.
Conseguently you create amodel of an employee for the problem. This model only implies properties which are needed to fulfill the
requirements of the administration, for instance name, date of birth and social number. These properties are called the data of the
(employee) model. Now you have described real persons with help of an abstract employee.

Of course, the pure description is not enough. There must be some operations defined with which the administration is able to handle
the abstract employees. For example, there must be an operation which allows you to create a new employee once a new person
enters the institution. Consequently, you have to identify the operations which should be able to be performed on an abstract
employee. Y ou aso decide to allow access to the employees data only with associated operations. This alows you to ensure that
data elements are always in a proper state. For example you are able to check if aprovided date isvalid.

To sum up, abstraction is the structuring of a nebulous problem into well-defined entities by defining their data and operations.
Consequently, these entities combine data and operations. They are not decoupled from each other.

3.2 Properties of Abstract Data Types

The example of the previous section shows, that with abstraction you create a well-defined entity which can be properly handled.
These entities define the data structure of a set of items. For example, each administered employee has a name, date of birth and
social number.

The data structure can only be accessed with defined operations. This set of operationsis called interface and is exported by the
entity. An entity with the propertiesjust described is called an abstract data type (ADT).

Figure 3.2 shows an ADT which consists of an abstract data structure and operations. Only the operations are viewable from the
outside and define the interface.

Figure 3.2: An abstract datatype (ADT).

abstract data type

abstract data structure

operation s inferfece

Once anew employeeis " created” the data structure is filled with actual values: Y ou now have an instance of an abstract employee.
Y ou can create as many instances of an abstract employee as needed to describe every real employed person.

Let'stry to put the characteristics of an ADT in amore formal way:

Definition (Abstract Data Type) An abstract data type (ADT) is characterized by the following properties:

1
It exports a type.
2.
It exports a set of operations. This set is called interface.
3.
Operations of the interface are the one and only access mechanismto the type's data structure.
4,

Axioms and preconditions define the application domain of the type.

With the first property it is possible to create more than one instance of an ADT as exemplified with the employee example. You
might also remember the list example of chapter 2. In the first version we have implemented a list as a module and were only ableto
use one list at atime. The second version introduces the ““handle" as areference to a ~list object”. From what we have learned now,
the handle in conjunction with the operations defined in the list module definesan ADT List:

1
When we use the handle we define the corresponding variable to be of type List.
2.
The interface to instances of type List is defined by the interface definition file.
3.
Since the interface definition file does not include the actual representation of the handle, it cannot be modified directly.
4.

The application domain is defined by the semantical meaning of provided operations. Axioms and preconditions include
statements such as
o Anempty listisalist."

o Letl=(d1, d2,d3, ..., dN) bealist. Then l.append(dM) resultsin I=(d1, d2, d3, ..., dN, dM)."
o " Thefirst element of alist can only be deleted if the list is not empty."

However, all of these properties are only valid due to our understanding of and our discipline in using the list module. It isin our
responsibility to use instances of List according to these rules.

Importance of Data Structure Encapsulation

The principle of hiding the used data structure and to only provide awell-defined interface is known as encapsulation. Why isit so
important to encapsul ate the data structure?

To answer this question consider the following mathematical example where we want to define an ADT for complex numbers. For
the following it is enough to know that complex numbers consists of two parts: real part and imaginary part. Both parts are
represented by real numbers. Complex numbers define several operations: addition, substraction, multiplication or division to name a
few. Axioms and preconditions are valid as defined by the mathematical definition of complex numbers. For example, it exists a
neutral element for addition.

To represent a complex number it is necessary to define the data structure to be used by its ADT. One can think of at least two
possibilities to do this:

. Both parts are stored in atwo-valued array where the first value indicates the real part and the second value the imaginary
part of the complex number. If x denotes the real part and y the imaginary part, you could think of accessing them viaarray
subscription: x=c[0] and y=c[1].

. Both parts are stored in atwo-valued record. If the element name of thereal part isr and that of the imaginary part isi, X
and y can be obtained with: x=c.r and y=c.i.

Point 3 of the ADT definition says that for each access to the data structure there must be an operation defined. The above access
examples seem to contradict this requirement. Isthisreally true?

Let'slook again at the two possibilities for representing imaginary numbers. Let's stick to the real part. In thefirst version, x equals ¢
[Q]. In the second version, x equals c.r. In both cases x equals ““something". It is this “~something" which differs from the actual data
structure used. But in both cases the performed operation ““equal” has the same meaning to declare x to be equal to the real part of
the complex number c: both cases archieve the same semantics.

If you think of more complex operations the impact of decoupling data structures from operations becomes even more clear. For
exampl e the addition of two complex numbers requires you to perform an addition for each part. Consequently, you must access the
value of each part which is different for each version. By providing an operation ~“add" you can encapsul ate these details from its
actual use. In an application context you simply ~add two complex numbers" regardless of how this functionality is actually
archieved.

Once you have created an ADT for complex numbers, say Complex, you can use it in the same way like well-known data types such
asintegers.

Let's summarize this: The separation of data structures and operations and the constraint to only access the data structure via awell-
defined interface allows you to choose data structures appropriate for the application environment.

3.3 Generic Abstract Data Types

ADTs are used to define a new type from which instances can be created. As shown in the list example, sometimes these instances
should operate on other data types as well. For instance, one can think of lists of apples, cars or even lists. The semantical definition
of alist isaways the same. Only the type of the data elements change according to what type the list should operate on.

This additional information could be specified by a generic parameter which is specified at instance creation time. Thus an instance
of ageneric ADT is actually an instance of a particular variant of the ADT. A list of apples can therefore be declared as follows:

Li st <Appl e> |i st Of Appl es;

The angle brackets now enclose the data type for which avariant of the generic ADT List should be created. listOfApples offers the
same interface as any other list, but operates on instances of type Apple.

3.4 Notation

As ADTs provide an abstract view to describe properties of sets of entities, their use is independent from a particular programming
language. We therefore introduce a notation here which is adopted from [3]. Each ADT description consists of two parts:

. Data: This part describes the structure of the data used in the ADT in an informal way.

. Operations: This part describes valid operations for this ADT, hence, it describesits interface. We use the special
operation constructor to describe the actions which are to be performed once an entity of thisADT is created and
destructor to describe the actions which are to be performed once an entity is destroyed. For each operation the provided
arguments as well as preconditions and postconditions are given.

As an example the description of the ADT Integer is presented. Let k be an integer expression:

ADT Integer is
Data
A sequence of digits optionally prefixed by a plus or minus sign. We refer to this signed whole number as N.
Operations
constructor
Creates anew integer.
add(k)
Creates anew integer which isthe sum of N and k.
Consequently, the postcondition of this operation is sum= N+k. Don't confuse this with assign
statements as used in programming languages! It is rather a mathematical equation which yields ““true”
for each value sum, N and k after add has been performed.
sub(k)
Similar to add, this operation creates a new integer of the difference of both integer values. Therefore
the postcondition for this operation is sum = N-k.
set(k)
Set N to k. The postcondition for this operationisN = k.
end

The description above is a specification for the ADT Integer. Please notice, that we use words for names of operations such as
““add". We could use the moreintuitive " +" sign instead, but this may lead to some confusion: Y ou must distinguish the operation ™
+" from the mathematical use of ~*+" in the postcondition. The name of the operation is just syntax whereas the semanticsis
described by the associated pre- and postconditions. However, it is aways a good idea to combine both to make reading of ADT
specifications easier.

Real programming languages are free to choose an arbitrary implementation for an ADT. For example, they might implement the
operation add with the infix operator ~+" leading to a more intuitive look for addition of integers.

3.5 Abstract Data Types and Object-Orientation

ADTsallows the creation of instances with well-defined properties and behaviour. In object-orientation ADTs are referred to as
classes. Therefore a class defines properties of objects which are the instances in an object-oriented environment.

ADTs define functionality by putting main emphasis on the involved data, their structure, operations as well as axioms and
preconditions. Consequently, object-oriented programming is ~ programming with ADTSs": combining functionality of different
ADTsto solve a problem. Therefore instances (objects) of ADTs (classes) are dynamically created, destroyed and used.

3.6 Excercises

1
ADT Integer.
@
Why are there no preconditions for operations add and sub?
(b)
Obvioudly, the ADT description of Integer isincomplete. Add methods mul, div and any other one. Describe
their impacts by specifying pre- and postconditions.
2.
Design an ADT Fraction which describes properties of fractions.
@
What data structures can be used? What are its elements?
(b)
What does the interface look like?
(©
Name afew axioms and preconditions.
3.
Describe in your own words properties of abstract data types.
4.
Why isit necessary to include axioms and preconditions to the definition of an abstract data type?
5.

Describe in your own words the relationship between
o instance and abstract data type,
o generic abstract data type and corresponding abstract data type,
o instances of ageneric abstract data type.

Next| Up| F’reviﬂu5|

Next: 4 Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 2 A Survey of

P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Next: 5 More Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 3 Abstract Data Types

Subsections

. 4.1 Implementation of Abstract Data Types
. 4.2 Class

. 4.3 Object

. 4.4 Message

. 4.5 Summary
. 4.6 Exercises

4 Object-Oriented Concepts

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

The previous sections already introduce some " object-oriented" concepts. However, they were applied in an procedural environment
or in averbal manner. In this section we investigate these concepts in more detail and give them names as used in existing object-
oriented programming languages.

4.1 Implementation of Abstract Data Types

The last section introduces abstract datatypes (ADTS) as an abstract view to define properties of a set of entities. Object-oriented
programming languages must allow to implement these types. Consequently, once an ADT isimplemented we have a particular
representation of it available.

Consider again the ADT Integer. Programming languages such as Pascal, C, Modula-2 and others already offer an implementation
for it. Sometimesit is called int or integer. Once you've created a variable of thistype you can use its provided operations. For
example, you can add two integers:

int i, j, Kk; /* Define three integers */
i = 1; /* Assign 1 to integer i */
i = 2; /* Assign 2 to integer j */
k =1 +j; /* Assign the sumof i and j to k */

Let's play with the above code fragment and outline the relationship to the ADT Integer. The first line defines three instancesi, j and
k of type Integer. Consequently, for each instance the special operation constructor should be called. In our example, thisis
internally done by the compiler. The compiler reserves memory to hold the value of an integer and “"binds" the corresponding name
toit. If you refer to i you actualy refer to this memory area which was ™~ constructed” by the definition of i. Optionally, compilers
might choose to initialize the memory, for example, they might set it to O (zero).

The next line

sets the value of i to be 1. Therefore we can describe this line with help of the ADT notation as follows:

mailto:pmueller@uu-gna.mit.edu

Perform operation set with argument 1 on the Integer instancei. Thisiswritten asfollows: i.set(1).

We now have arepresentation at two levels. Thefirst level isthe ADT level where we express everything that is done to an instance
of thisADT by the invocation of defined operations. At thislevel, pre- and postconditions are used to describe what actually
happens. In the following example, these conditions are enclosed in curly brackets.

{ Precondition: i = n wherenisany Integer }

i.set(1)

{ Postcondition: i =1}

Don't forget that we currently talk about the ADT level! Consequently, the conditions are mathematical conditions.

The second level is the implementation level, where an actual representation is chosen for the operation. In C the equal sign =
implements the set() operation. However, in Pascal the following representation was chosen:

i =1

In either case, the ADT operation set isimplemented.

Let's stress these levels alittle bit further and have alook at the line
k =i +j;

Obvioudly, ~"+" was chosen to implement the add operation. We could read the part i +j" as ~ add the value of j to the value of i",
thus at the ADT level thisresultsin

{ Precondition: Let i = n1 and j = n2 with n1, n2 particular Integers}

i.add(j)

{ Postcondition: i =nlandj=n2}

The postcondition ensures that i and j do not change their values. Please recall the specification of add. It saysthat a new Integer is
created the value of which is the sum. Consequently, we must provide a mechanism to access this new instance. We do this with the
set operation applied on instance k:

{ Precondition: Let k = n wherenisany Integer }

k.set(i.add(j))

{ Postcondition: k=i +j }

As you can see, some programming languages choose a representation which almost equals the mathematical formulation used in the
pre- and postconditions. This makes it sometimes difficult to not mix up both levels.

4.2 Class

A classisan actual representation of an ADT. It therefore provides implementation details for the data structure used and
operations. We play with the ADT Integer and design our own classfor it:

class Integer {
attributes:
int i

met hods:
set Val ue(int n)
I nt eger addVal ue(| nteger j)

}

In the example above as well asin examples which follow we use a notation which is not programming language specific. In this

notationcl ass {...} denotesthe definition of aclass. Enclosed in the curly brackets are two sectionsat t ri but es: and

nmet hods: which define the implementation of the data structure and operations of the corresponding ADT. Again we distinguish
the two levels with different terms: At the implementation level we speak of ““attributes” which are elements of the data structure at
the ADT level. The same applies to ““methods" which are the implementation of the ADT operations.

In our example, the data structure consists of only one element: a signed sequence of digits. The corresponding attribute is an

ordinary integer of a programming Ianguagelg. We only define two methods setValue() and addValue() representing the two
operations set and add.

Definition (Class) A classis the implementation of an abstract data type (ADT). It defines attributes and methods which implement
the data structure and operations of the ADT, respectively. Instances of classes are called objects. Consequently, classes define
properties and behaviour of sets of objects.

4.3 Object

Recall the employee example of chapter 3. We have talked of instances of abstract employees. These instances are actual

“examples' of an abstract employee, hence, they contain actual values to represent a particular employee. We call these instances
objects.

Objects are uniquely identifiable by a name. Therefore you could have two distinguishable objects with the same set of values. This
issimilar to ““traditional" programming languages where you could have, say two integersi and j both of which equal to “"2". Please
noticethe use of “'i" and j" in the last sentence to name the two integers. We refer to the set of values at a particular time asthe
state of the object.

Definition (Object) An object is an instance of a class. It can be uniquely identified by its name and it defines a state which is
represented by the values of its attributes at a particular time.

The state of the object changes according to the methods which are applied to it. We refer to these possible sequence of state changes
as the behaviour of the object:

Definition (Behaviour) The behaviour of an object is defined by the set of methods which can be applied on it.

We now have two main concepts of object-orientation introduced, class and object. Object-oriented programming is therefore the
implementation of abstract data types or, in more simple words, the writing of classes. At runtime instances of these classes, the
objects, achieve the goal of the program by changing their states. Consequently, you can think of your running program as a
collection of objects. The question arises of how these objects interact? We therefore introduce the concept of a message in the next
section.

4.4 Message

A running program is a pool of objects where objects are created, destroyed and interacting. This interacting is based on messages
which are sent from one object to another asking the recipient to apply a method on itself. To give you an understanding of this
communication, let's come back to the class Integer presented in section 4.2. In our pseudo programming language we could create

new objects and invoke methods on them. For example, we could use

I nteger i; /* Define a new integer object */
i.setValue(l); /* Set its value to 1 */

to express the fact, that the integer object i should set its value to 1. Thisisthe message " Apply method setValue with argument 1 on
yourself." sent to object i. We notate the sending of a message with .". This notation is aso used in C++; other object-oriented

languages might use other notations, for example L

Sending a message asking an object to apply a method is similar to aprocedure call in traditional" programming languages.

However, in object-orientation there is aview of autonomous objects which communicate with each other by exchanging messages.
Objects react when they receive messages by applying methods on themselves. They also may deny the execution of a method, for
exampleif the calling object is not allowed to execute the requested method.

In our example, the message and the method which should be applied once the message is received have the same name: We send
““setVaue with argument 1" to object i which applies “setValue(1)".

Definition (Message) A message is a request to an object to invoke one of its methods. A message therefore contains

. the name of the method and
. the arguments of the method.

Conseguently, invocation of amethod isjust a reaction caused by receipt of amessage. Thisisonly possible, if the method is
actually known to the object.

Definition (Method) A method is associated with a class. An object invokes a method as a reaction to receipt of a message.

4.5 Summary

To view aprogram as a collection of interacting objects is afundamental principle in object-oriented programming. Objectsin this
collection react upon receipt of messages, changing their state according to invocation of methods which might cause other messages
sent to other objects. Thisisillustrated in Figure 4.1.

Figure4.1: A program consisting of four objects.

Program

In thisfigure, the program consists of only four objects. These objects send messages to each other, as indicated by the arrowed lines.
Note that the third object sends itself a message.

How does this view help us developing software? To answer this question let's recall how we have devel oped software for procedural
programming languages. The first step was to divide the problem into smaller manageable pieces. Typically these pieces were
oriented to the procedures which were taken place to solve the problem, rather than the involved data.

As an example consider your computer. Especially, how a character appears on the screen when you type akey. In a procedural
environment you write down the several steps necessary to bring a character on the screen:

1
wait, until akey is pressed.
2.
get key value
3.
write key value at current cursor position
4.

advance cursor position

Y ou do not distinguish entities with well-defined properties and well-known behaviour. In an object-oriented environment you
would distinguish the interacting objects key and screen. Once a key receive amessage that it should change its state to be pressed,
its corresponding object sends a message to the screen object. This message requests the screen object to display the associated key
value.

4.6 Exercises

Class.

@
(b)

What distinguishes a classfrom an ADT?

Design aclassfor the ADT Complex. What representations do you choose for the ADT operations? Why?
Interacting objects. Have alook to your tasks of your day life. Choose one which does not involve too many steps (for
example, watching TV, cooking ameal, etc.). Describe thistask in procedural and object-oriented form. Try to begin

viewing the world to consist of objects.

Object view. Regarding the last exercise, what problems do you encounter?

M essages.
@

(b)
(©

Why do we talk about ““messages" rather than ™" procedure calls'?
Name afew messages which make sense in the Internet environment. (Y ou must therefore identify objects.)

Why makes the term ““message" more sense in the environment of the last exercise, than the term ™ procedure
cal"?

Ne:-:t| Up| Previous

Next: 5 More Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 3 Abstract Data Types
P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Next: 6 Even More Object-Oriented Up: Introduction to Object-Oriented Programming Previous. 4 Object-Oriented Concepts

Subsections

. 5.1 Relationships
o A-Kind-Of relationship

o IsA relationship
o Part-Of relationship
o Has-A relationship
. 5.2 Inheritance
. 5.3 Multiple Inheritance
. 5.4 Abstract Classes
. 5.5 Exercises

5 More Object-Oriented Concepts

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

Whereas the previous lecture introduces the fundamental concepts of object-oriented programming, this lecture presents more details

about the object-oriented idea. This section is mainly adopted from [glg.

5.1 Relationships

In exercise 3.6.5 you already investigate rel ationships between abstract data types and instances and describe them in your own
words. Let's go in more detail here.

A-Kind-Of relationship

Consider you have to write a drawing program. This program would alow drawing of various objects such as points, circles,
rectangles, triangles and many more. For each object you provide a class definition. For example, the point class just defines a point
by its coordinates:

class Point {
attributes:

int x, vy

met hods:
set X(i nt newX)
get X()
set Y(int newy)
get Y()

Y ou continue defining classes of your drawing program with aclass to describe circles. A circle defines a center point and aradius:

mailto:pmueller@uu-gna.mit.edu

class Circle {
attributes:
int x, vy,
radi us

met hods:
set X(i nt newX)
get X()
set Y(i nt newy)
get Y()
set Radi us(newRadi us)
get Radi us()

Comparing both class definitions we can observe the following:

. Both classes have two data elements x and y. In the class Point these elements describe the position of the point, in the case
of class Circle they describe the circle's center. Thus, x and y have the same meaning in both classes: They describe the
position of their associated object by defining a point.

. Both classes offer the same set of methods to get and set the value of the two data elements x and y.

. ClassCircle "adds" a new data element radius and corresponding access methods.

Knowing the properties of class Point we can describe a circle as a point plus aradius and methods to accessit. Thus, acircleis " a
kind-of" point. However, acircle is somewhat more ““specialized". We illustrate this graphically as shown in Figure 5.1.

Figure5.1: lllustration of ~“akind-of" relationship.

Circle ﬂ_kmd_of b{ Point

In this and the following figures, classes are drawn using rectangles. Their name aways starts with an uppercase letter. The arrowed
line indicates the direction of the relation, hence, it isto be read as *"Circle is a-kind-of Point."

Is-A relationship

The previous relationship is used at the class level to describe relationships between two similar classes. If we create objects of two
such classes we refer to their relationship as an “is-a" relationship.

Since the class Circleis akind of class Point, an instance of Circle, say acircle, isapoi ntlg. Consequently, each circle behaves
like a point. For example, you can move pointsin x direction by altering the value of x. Similarly, you move circlesin this direction
by altering their x value.

Figure 5.2 illustrates this relationship. In this and the following figures, objects are drawn using rectangles with round corners. Their
name only consists of lowercase letters.

Figure5.2: lllustration of is-a" relationship.

i i5-a i
circle point

Part-Of relationship

Y ou sometimes need to be able to build objects by combining them out of others. Y ou already know this from procedural
programming, where you have the structure or record construct to put data of various types together.

Let's come back to our drawing program. Y ou already have created several classes for the available figures. Now you decide that you
want to have a special figure which represents your own logo which consists of acircle and atriangle. (Let's assume, that you
already have defined a class Triangle.) Thus, your logo consists of two parts or the circle and triangle are part-of your logo:

cl ass Logo {
attributes:
Crcle circle
Triangle triangle

net hods:

set (Poi nt where)
}

Weillustrate thisin Figure 5.3.

Figure5.3: lllustration of *"part-of" relationship.

part-of petrt-of
et
Circle Logo Triangle

Has-A relationship

Thisrelationship isjust the inverse version of the part-of relationship. Therefore we can easily add this relationship to the part-of
illustration by adding arrows in the other direction (Figure 5.4).

Figure5.4: lllustration of ““has-a" relationship.

petrt-of petrt-of
- - _
Circle Logo Triangle

Frees-ct brees-ct
—ig| -

5.2 Inheritance

With inheritance we are able to make use of the a-kind-of and is-arelationship. As described there, classes which are a-kind-of
another class share properties of the latter. In our point and circle example, we can define a circle which inherits from point:

class Circle inherits from Point {
attributes:
i nt radius

nmet hods:

set Radi us(i nt newRadi us)
get Radi us()

}

Class Circle inherits all data elements and methods from point. There is no need to define them twice: We just use already existing
and well-known data and method definitions.

On the object level we are now able to use acircle just as we would use a point, because a circle is-a point. For example, we can
define acircle object and set its center point coordinates:

Crcle acircle

acircle.set X(1) /* Inherited fromPoint */
acircle.setY(2)

acircl e. set Radi us(3) /* Added by Circle */

“ls-a' also implies, that we can use a circle everywhere where apoint is expected. For example, you can write afunction or method,
say move(), which should move a point in x direction:

nove(Poi nt apoint, int deltax) {
apoi nt . set X(apoi nt.get X() + deltax)

}

Asacircleinherits from a point, you can use this function with a circle argument to move its center point and, hence, the whole
circle:

Circle acircle

nove(acircle, 10) /* Move circle by moving */
[* its center point */

Let'stry to formalize the term ““inheritance":

Definition (I nheritance) I nheritance is the mechanism which allows a class A to inherit properties of a class B. We say ~ A inherits
from B". Objects of class A thus have access to attributes and methods of class B without the need to redefine them. The following
definition defines two terms with which we are able to refer to participating classes when they use inheritance.

Definition (Superclass/Subclass) If class A inherits from class B, then B is called superclass of A. Ais called subclass of B. Objects
of asubclass can be used where objects of the corresponding superclass are expected. Thisis due to the fact that objects of the
subclass share the same behaviour as objects of the superclass.

In the literature you may also find other terms for ““superclass" and " subclass'. Superclasses are also called parent classes.
Subclasses may also be called child classes or just derived classes.

Of course, you can again inherit from a subclass, making this class the superclass of the new subclass. This leads to a hierarchy of
superclass/subclass relationships. If you draw this hierarchy you get an inheritance graph.

A common drawing scheme isto use arrowed lines to indicate the inheritance relationship between two classes or objects. In our
examples we have used ““inherits-from". Consequently, the arrowed line starts from the subclass towards the superclass as il lustrated
in Figure 5.5.

Figure5.5: A simple
inheritance graph.

Point

infrerit-from

Circle

In the literature you also find illustrations where the arrowed lines are used just the other way around. The direction in which the
arrowed line is used, depends on how the corresponding author has decided to understand it.

Anyway, within thistutorial, the arrowed line is always directed towards the superclass.

In the following sections an unmarked arrowed line indicates ~inherit-from".

5.3 Multiple Inheritance

One important object-oriented mechanism is multiple inheritance. Multiple inheritance does not mean that multiple subclasses share
the same superclass. It also does not mean that a subclass can inherit from a class which itself is a subclass of another class.

Multiple inheritance means that one subclass can have more than one superclass. This enables the subclass to inherit properties of
more than one superclass and to ““merge" their properties.

As an example consider again our drawing program. Suppose we already have a class String which allows convenient handling of
text. For example, it might have a method to append other text. In our program we would like to use this class to add text to the
possible drawing objects. It would be nice to also use already existing routines such as move() to move the text around.
Consequently, it makes sense to let a drawable text have a point which defines its location within the drawing area. Therefore we
derive anew class DrawableString which inherits properties from Point and Sring asillustrated in Figure 5.6.

Figure5.6: Derive adrawable string which
inherits properties of Pointand Sring.

Point String

DrawableString

In our pseudo language we write this by simply separating the multiple superclasses by comma:

cl ass Drawabl eString inherits fromPoint, String {
attributes:

/* Al inherited from supercl asses */

nmet hods:
/* Al inherited from supercl asses */

}

We can use objects of class DrawableString like both points and strings. Because a drawablestring is-a point we can move them
around

Drawabl eString dstring

nove(dstring, 10)

Sinceit isastring, we can append other text to them:
dstring. append("The red brown fox ...")
Now it'stime for the definition of multiple inheritance:

Definition (Multiple Inheritance) If class A inherits from more than one class, ie. A inherits from B1, B2, ..., Bn, we speak of
multiple inheritance. This may introduce naming conflictsin A if at least two of its superclasses define properties with the same
name.

The above definition introduce naming conflicts which occur if more than one superclass of a subclass use the same name for either
attributes or methods. For an example, let's assume, that class String defines a method setX() which sets the string to a sequence of

X characterslg. The question arises, what should be inherited by DrawableString? The Point, Sring version or none of them?
These conflicts can be solved in at least two ways:

. The order in which the superclasses are provided define which property will be accessible by the conflict causing name.
Others will be ““hidden".

. The subclass must resolve the conflict by providing a property with the name and by defining how to use the ones from its
superclasses.

Thefirst solution is not very convenient as it introduces implicit consequences depending on the order in which classes inherit from
each other. For the second case, subclasses must explicitly redefine properties which are involved in a naming conflict.

A special type of naming conflict isintroduced if aclass D multiply inherits from superclasses B and C which themselves are derived
from one superclass A. This leads to an inheritance graph as shown in Figure 5.7.

Figure5.7: A name conflict introduced by a
shared superclass of superclasses used with
multiple inheritance.

D

The question arises what properties class D actually inherits from its superclasses B and C. Some existing programming languages
solve this specia inheritance graph by deriving D with

. the properties of A plus
. the properties of B and C without the properties they have inherited from A.

Consequently, D cannot introduce naming conflicts with names of class A. However, if B and C add properties with the same name,
D runsinto a naming conflict.

Another possible solution is, that D inherits from both inheritance paths. In this solution, D owns two copies of the properties of A:
oneisinherited by B and one by C.

Although multiple inheritance is a powerful object-oriented mechanism the problems introduced with naming conflicts have lead
several authorsto “doom" it. Asthe result of multiple inheritance can always be achieved by using (simple€) inheritance some object-
oriented languages even don't allow its use. However, carefully used, under some conditions multiple inheritance provides an
efficient and elegant way of formulating things.

5.4 Abstract Classes

With inheritance we are able to force a subclass to offer the same properties like their superclasses. Consequently, objects of a
subclass behave like objects of their superclasses.

Sometimes it make sense to only describe the properties of a set of objects without knowing the actual behaviour beforehand. In our
drawing program example, each object should provide a method to draw itself on the drawing area. However, the necessary stepsto
draw an objects depends on its represented shape. For example, the drawing routine of acircle is different from the drawing routine
of arectangle.

Let's call the drawing method print(). To force every drawable object to include such method, we define a class DrawableObject
from which every other classin our example inherits general properties of drawable objects:

abstract class Drawabl eCbject {
attributes:

nmet hods:
print()
}

We introduce the new keyword abstract here. It is used to express the fact that derived classes must ““redefine” the properties to
fulfill the desired functionality. Thus from the abstract class point of view, the properties are only specified but not fully defined.
The full definition including the semantics of the properties must be provided by derived classes.

Now, every classin our drawing program example inherits properties from the general drawable object class. Therefore, class Point
changesto:

class Point inherits from Drawabl ehj ect ({
attributes:

int x, vy

nmet hods:
set X(i nt newX)
get X()
set Y(int newY)
get Y()

print() /* Redefine for Point */

We are now able to force every drawable object to have a method called print which should provide functionality to draw the object
within the drawing area. The superclass of al drawable objects, class DrawableObject, does not provide any functionality for
drawing itself. It is not intended to create objects from it. This class rather specifies properties which must be defined by every
derived class. We refer to this specia type of classes as abstract classes:

Definition (Abstract Class) A class A is called abstract class if it is only used as a superclass for other classes. Class A only
specifies properties. It is not used to create objects. Derived classes must define the properties of A.

Abstract classes allow us to structure our inheritance graph. However, we actually don't want to create objects from them: we only
want to express common characteristics of a set of classes.

5.5 Exercises

1

Inheritance. Consider the drawing program example again.

@)
Define class Rectangle by inheriting from class Point. The point should indicate the upper |eft corner of the
rectangle. What are your class attributes? What additional methods do you introduce?

(b)
All current examples are based on a two-dimensional view. Y ou now want to introduce 3D objects such as
spheres, cubes or cuboids. Design a class Sphere by using a class 3D-Point. Specify the role of the point in a
sphere. What relationship do you use between class Point and 3D-Point?

(©
What functionality does move() provide for 3D objects? Be as precise as you can.

(d)
Draw the inheritance graph including the following classes DrawableObject, Point, Circle, Rectangle, 3D-Point
and Sphere.

(€)

Have alook at the inheritance graph of Figure 5.8.

Figure
5.8: Alternative
inheritance graph
for class Sphere.

Point

Circle

Sphere

A corresponding definition might ook like this:

cl ass Sphere inherits fromCircle {
attributes:

int z /* Add third di nension */
net hods:

set Z(int newZz)

get Z()

}

Give reasons for advantages/disadvantages of this alternative.

Multiple inheritance. Compare the inheritance graph shown in Figure 5.9 with that of Figure 5.7. Here, we illustrate that B
and C have each their own copy of A.

Figure5.9: lllustration of the second multiple
inheritance semantics.

D

What naming conflicts can occur? Try to define cases by playing with simple example classes.

Next| Up| F’reviﬂu5|

Next: 6 Even More Object-Oriented Up: Introduction to Object-Oriented Programming Previous. 4 Object-Oriented Concepts
P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Next: 7 Introduction to C++ Up: Introduction to Object-Oriented Programming Previous: 5 More Object-Oriented Concepts

Subsections

. 6.1 Generic Types
. 6.2 Static and Dynamic Binding
. 6.3 Polymorphism

6 Even More Object-Oriented Concepts

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

We continue with our tour through the world of object-oriented concepts by presenting a short introduction to static versus dynamic
binding. With this, we can introduce polymorphism as a mechanism which let objects figure out what to do at runtime. But first, here
isabrief overview about generic types.

6.1 Generic Types

We already know generic types from chapter 3 when we have talked about generic abstract data types. When defining a class, we

actually define auser defined type. Some of these types can operate on other types. For example, there could be lists of apples, list of
cars, lists of complex numbers of even lists of lists.

At the time, when we write down a class definition, we must be able to say that this class should define a generic type. However, we
don't know with which types the class will be used. Consequently, we must be able to define the class with help of a ™ placeholder” to
which we refer asif it is the type on which the class operates. Thus, the class definition provides us with atemplate of an actual

class. The actual class definition is created once we declare a particular object. Let'sillustrate this with the following example.
Suppose, you want to define alist class which should be a generic type. Thus, it should be possible to declare list objects for apples,
cars or any other type.

tenplate class List for T {
attributes:
/* Data structure needed to inplenment */
[* the list */

nmet hods:
append(T el emrent)
T getFirst()
T get Next ()
bool nore()

The above template class List looks like any other class definition. However, the first line declares List to be atemplate for various
types. Theidentifier T is used as a placeholder for an actual type. For example, append() takes one element as an argument. The type
of this element will be the data type with which an actual list object is created. For example, we can declare alist object for applesif
adefinition fot the type Apple exists:

Li st for Apple appleLi st

mailto:pmueller@uu-gna.mit.edu

Appl e anAppl e,
anot her Appl e

appl eLi st . append(anot her Appl e)
appl eLi st. append(anAppl e)

Thefirst line declares appleList to be alist for apples. At thistime, the compiler uses the template definition, substitutes every
occurrence of T with Apple and creates an actual class definition for it. This|eads to a class definition similar to the one that follows:

class List {
attributes:
/* Data structure needed to inplenment */
/[* the list */

nmet hods:
append(Appl e el enent)
Appl e getFirst()

Appl e get Next ()
bool nore()

Thisis not exactly, what the compiler generates. The compiler must ensure that we can create multiple lists for different types at any
time. For example, if we need another list for, say pears, we can write:

Li st for Apple appleList
Li st for Pear pearlList

In both cases the compiler generates an actual class definition. The reason why both do not conflict by their nameis that the compiler
generates unique names. However, since thisis not viewable to us, we don't go in more detail here. In any case, if you declare just
another list of apples, the compiler can figure out if there already is an actual class definition and useit or if it hasto be created.
Thus,

Li st for Apple aList
Li st for Apple anotherlLi st

will create the actual class definition for aList and will reuse it for anotherList. Consequently, both are of the same type. We
summarize thisin the following definition:

Definition (Template Class) If a class A is parameterized with a data type B, A is called template class. Once an object of Ais
created, B isreplaced by an actual data type. This allows the definition of an actual class based on the template specified for A and
the actual data type.

We are able to define template classes with more than one parameter. For example, directories are collections of objects where each
object can be referenced by akey. Of course, adirectory should be able to store any type of object. But there are also various
possibilities for keys. For instance, they might be strings or numbers. Consequently, we would define atemplate class Directory
which is based on two type parameters, one for the key and one for the stored objects.

6.2 Static and Dynamic Binding

In strongly typed programming languages you typically have to declare variables prior to their use. Thisaso implies the variable's
definition where the compiler reserves space for the variable. For example, in Pascal an expression like

var i : integer;

declares variablei to be of type integer. Additionally, it defines enough memory space to hold an integer value.

With the declaration we bind the name i to the type integer. This binding is true within the scope in which i is declared. This enables
the compiler to check at compilation time for type consistency. For example, the following assignment will result in atype mismatch
error when you try to compileit:

var i : integer;

i :="'string';
We call this particular type of binding “static" becauseit is fixed at compile time.

Definition (Static Binding) If thetype T of a variable is explicitly associated with its name N by declaration, we say, that N is
statically bound to T. The association processis called static binding.

There exist programming languages which are not using explicitly typed variables. For example, some languages allow to introduce
variables once they are needed:

/* No appearance of i */
i := 123 /* Creation of i as an integer */

Thetype of i isknown as soon asitsvalueis set. Inthiscase, i is of type integer since we have assigned a whole number to it. Thus,
because the content of i is awhole number, the type of i isinteger.

Definition (Dynamic Binding) If the type T of a variable with name N isimplicitly associated by its content, we say, that N is
dynamically bound to T. The association processis called dynamic binding.

Both bindings differ in the time when the type is bound to the variable. Consider the following example which is only possible with
dynamic binding:

i f sonmecondition() == TRUE t hen
n:= 123

el se
n := "abc'

endi f

Thetype of n after thei f statement depends on the evaluation of somecondition(). If it is TRUE, nis of type integer whereasin the
other caseit is of type string.

6.3 Polymorphism

Polymorphism allows an entity (for example, variable, function or object) to take a variety of representations. Therefore we have to
distinguish different types of polymorphism which will be outlined here.

Thefirst typeis similar to the concept of dynamic binding. Here, the type of a variable depends on its content. Thus, its type depends
on the content at a specific time:

v .= 123 [* v is integer */

/* use v as integer */

[* v "switches" to string */
/[* use v as string */

v = "abc

Definition (Polymorphism (1)) The concept of dynamic binding allows a variable to take different types dependent on the content at
a particular time. This ability of a variableis called polymorphism. Another type of polymorphism can be defined for functions. For
exampl e, suppose you want to define afunction isNull() which returns TRUE if its argument is O (zero) and FAL SE otherwise. For
integer numbersthisis easy:

bool ean isNull (int i) {
if (i == 0) then
return TRUE
el se
return FALSE
endi f

However, if we want to check thisfor real numbers, we should use another comparison due to the precision problem:

bool ean isNull (real r) {
if (r <0.01l and r > -0.99) then
return TRUE
el se
return FALSE
endi f

In both cases we want the function to have the name isNull. In programming languages without polymorphism for functions we
cannot declare these two functions because the name isNull would be doubly defined. Without polymorphism for functions, doubly
defined names would be ambiguous. However, if the language would take the parameters of the function into account it would work.
Thus, functions (or methods) are uniquely identified by:

. the name of the function (or method) and
. thetypesof its parameter list.

Since the parameter list of both isNull functions differ, the compiler is able to figure out the correct function call by using the actual
types of the arguments:

var i : integer
var r : real

i =0

r =0.0

if (isNull(i)) then ... /* Use isNull(int) */
if (isNull(r)) then ... /* Use isNull(real) */

Definition (Polymorphism (2)) If a function (or method) is defined by the combination of

. itsnameand
. thelist of types of its parameters

we speak of polymorphism. This type of polymorphism allows us to reuse the same name for functions (or methods) as long as the
parameter list differs. Sometimes this type of polymorphismis called overloading.

The last type of polymorphism allows an object to choose correct methods. Consider the function move() again, which takes an
object of class Point as its argument. We have used this function with any object of derived classes, because the is-aréelation holds.

Now consider afunction display() which should be used to display drawable objects. The declaration of this function might look like
this:

di spl ay(Drawabl ethj ect 0) {

o.print()

We would like to use this function with objects of classes derived from DrawableObject:

Crcle acircle
Poi nt apoi nt
Rect angl e arectangl e

di spl ay(apoi nt) [* Should invoke apoint.print() */
di spl ay(acircle) /* Should invoke acircle.print() */
di spl ay(arectangle) /* Should invoke arectangle.print() */

The actual method should be defined by the content of the object o of function display(). Since thisis somewhat complicated, here is
amore abstract example:

cl ass Base {
attributes:

met hods:
virtual foo()
bar ()

}

class Derived inherits from Base {
attributes:

net hods:
virtual foo()
bar ()

}

deno(Base 0) {
o.foo()
0. bar ()

}

Base abase
Derived aderived

deno(abase)
deno(aderi ved)

In this example we define two classes Base and Derived. Each class defines two methods foo() and bar(). The first method is defined
asvi rtual . Thismeansthat if this method is invoked its definition should be evaluated by the content of the object.

We then define a function demo() which takes a Base object asits argument. Consequently, we can use this function with objects of
class Derived astheis-arelation holds. We call this function with a Base object and a Derived object, respectively.

Suppose, that foo() and bar() are defined to just print out their name and the class in which they are defined. Then the output is as
follows:

foo() of Base call ed.
bar () of Base call ed.
foo() of Derived called.
bar () of Base call ed.

Why isthis so? Let's see what happens. Thefirst call to demo() uses a Base object. Thus, the function's argument is ™ filled" with an

object of class Base. When it istime to invoke method foo() it's actual functionality is chosen based on the current content of the
corresponding object 0. Thistime, it is a Base object. Consequently, foo() as defined in class Base is called.

The call to bar() is not subject to this content resolution. It is not marked asvi r t ual . Consequently, bar() is called in the scope of
class Base.

The second call to demo() takes a Derived object asits argument. Thus, the argument o isfilled with a Derived object. However, o
itself just represents the Base part of the provided object aderived.

Now, the call to foo() is evaluated by examining the content of o, hence, it is called within the scope of Derived. On the other hand,
bar() is still evaluated within the scope of Base.

Definition (Polymorphism (3)) Objects of superclasses can be filled with objects of their subclasses. Operators and methods of
subclasses can be defined to be evaluated in two contextes:

Based on object type, leading to an evaluation within the scope of the superclass.

Based on object content, leading to an eval uation within the scope of the contained subclass.

The second type is called polymorphism.

Next| Up| F’reviﬂu5|

Next: 7 Introduction to C++ Up: Introduction to Object-Oriented Programming Previous. 5 More Object-Oriented Concepts

P. Mueller
8/31/1997

Ne:-:t| l_Jp| Previous

Next: 8 From C To Up: Introduction to Object-Oriented Programming Previous: 6 Even More Object-Oriented

Subsections

. 7.1 The C Programming Language
o 7.1.1 Data Types
o 7.1.2 Statements
o 7.1.3 Expressions and Operators
o 7.1.4 Functions
o 7.1.5 Pointers and Arrays
o 7.1.6 A First Program
. 7.2 What Next?

7 Introduction to C++

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

This section isthefirst part of the introduction to C++. Here we focus on C from which C++ was adopted. C++ extends the C
programming language with strong typing, some features and - most importantly - object-oriented concepts.

7.1 The C Programming Language

Developed in the late 1970s, C gained an huge success due to the development of UNIX which was almost entirely written in this
language [4]. In contrast to other high level languages, C was written by programmers for programmers. Thus it allows sometimes, say,

weird things which in other languages such as Pascal are forbidden due to its bad influence on programming style. Anyway, when used
with some discipline, C is as good a language as any other.

The comment in Cisenclosedin/ * ... */ . Comments cannot be nested.

7.1.1 Data Types

Table 7.1 describes the built-in data types of C. The specified Sze is measured in bytes on a 386 PC running Linux 1.2.13. The
provided Domain is based on the Sze value. Y ou can obtain information about the size of a datatype with the si zeof operator.

Table 7.1: Built-in types.

mailto:pmueller@uu-gna.mit.edu

integer

Type Description Size | Domain

char Signed charac- 1 -128..127
ter/byte. Char-
acters are en-
closed in single
quotes.

double Double preci- 8 ca. 107°% 107"
sion mmber

int Signed integer 4 —231 2% 1

float Floating point 4 ca. 107%.10%%
mimber

long (int) Signed long in- 4 —231_ 23 1
teger

long long (int) Signed very | 8 — 203 263 1
long integer

short (int) Short integer 2 -2 25 1

unsigned char Unsigned char- 1 0..255
acter /byte

unsigned (int) Unsigned inte- | 4 | 0.2°% -1
ger

unsigned long (int) Unsigned long | 4 | 0.2% -1
integer

unsigned long long (int) | Unsigned very | 8 | 0.2%4 -1
long integer

unsigned short (int) Unsigned short 2 0.2 =1

Variables of these types are defined simply by preceeding the name with the type:

int an_int;
float a_float;

Il ong long a_very_long_integer;

With st ruct you can combine several different types together. In other languages thisis sometimes called arecord:

struct date_s {
int day, nonth, year;
} aDat e;

The above definition of aDat e is also the declaration of astructure called dat e_s. We can define other variables of this type by

referencing the structure by name:

struct date_s anot herDat e;

We do not have to name structures. If we omit the name, we just cannot reuse it. However, if we name a structure, we can just declare
it without defining avariable:

struct time_s {
int hour, mnute, second;

b

We are able to use this structure as shown for anot her Dat e. Thisisvery similar to atype definition known in other languages
where atypeis declared prior to the definition of avariable of thistype.

Variables must be defined prior to their use. These definitions must occur before any statement, thus they form the topmost part within
a statement block.

7.1.2 Statements

C defines al usua flow control statements. Statements are terminated by a semicolon ™*;". We can group multiple statements into
blocks by enclosing them in curly brackets. Within each block, we can define new variables:

{
int i; /* Define a global i */
i =1 /* Assign i the value 0 */
{ /* Begin new block */
int i; /* Define a local i */
i = 2; /* Set its value to 2 */
} /* C ose block */
/* Here i is again 1 fromthe outer block */
}

Table 7.2 lists all flow control statements:

Table 7.2; Statements.

Statement Description

break; Leave current block. Also used to leave
case statement in switch.

continue; Only used in loops to continue with next
loop immediately.

do Execute stmt as long as expris TRUE.

stmit

while (expr);

for ([expr]; [expr]; [expr]) This is an abbreviation for a while loop

st where the first expr is the initialization,

the second expris the condition and the
third expr is the step.

goto label; Jumps to position indicated by label
The destination is label followed by colon
W@ m

if (expr) stmt[else stmt] IF-THEN-ELSE in C notation

return [expr|; Return from function. If function re-

turns void return should be used with-
out additional argument. Otherwise the
ralue of expris returned.

switch (erpr) { After evaluation of exprits value is com-
case ronst-expr: stmis pared with the case clauses. Execution
case const-expr: stmits continues at the one that matches. BE-
WARE: You must use break to leave
[default: stmis| the switch if you don’t want execution
1 of following case clauses! If no case

clanse matches and a default clause ex-
ists, the statements of the default clause
are executed.

while (expr) stmt Repeat stmt as long as expris TRUE.

Thef or statement isthe only statement which really differsfrom f or statements known from other languages. All other statements
more or less only differ in their syntax. What follows are two blocks which are totally equal in their functionality. One usesthewhi | e
loop while the other thef or variant:

int ix, sum

sum = 0;

ix = 0; /* initialization */
while (ix <10) { /* condition */
sum = sum + 1,

iXx =ix + 1; [* step */

{

int ix, sum

sum = 0;

for (ix =0; ix <10; ix =ix + 1)
sum = sum + 1;

To understand this, you have to know, that an assignment is an expression.

7.1.3 Expressions and Operators

In C amost everything is an expression. For example, the assignment statement ~ =" returns the value of its righthand operand. Asa
“side effect” it also sets the value of the lefthand operand. Thus,

sets the value of ix to 12 (assuming that ix has an appropriate type). Now that the assignment is also an expression, we can combine
several of them; for example:

kx = jx = ix = 12;

What happens? The first assignment assigns kx the value of its righthand side. Thisisthe value of the assignment to jx. But thisisthe
vaue of the assignment to ix. The value of thislatter is 12 which is returned to jx which is returned to kx. Thus we have expressed

ix = 12;

jx = 12;

kx = 12;
inoneline.

Truth in Cisdefined as follows. The value O (zero) stands for FALSE. Any other value is TRUE. For example, the standard function
stremp() takes two strings as argument and returns -1 if the first is lower than the second, O if they are equal and 1 if thefirst is greater
than the second one. To compare if two strings str1 and str2 are equal you often see the following i f construct:

if (!strcenp(strl, str2)) {
/* strl equals str2 */

}

el se {
/* strl does not equal str2 */

}

The exclamation mark indicates the boolean NOT. Thus the expression evaluates to TRUE only if strcmp() returns 0.

Expressions are combined of both terms and operators. The first could be constansts, variables or expressions. From the latter, C offers
all operators known from other languages. However, it offers some operators which could be viewed as abbreviations to combinations
of other operators. Table 7.3 lists available operators. The second column shows their priority where smaller numbers indicate higher

priority and same numbers, same priority. The last column lists the order of evaluation.

Table 7.3: Operators.

Operator | Priority | Description Order
() 1 Funection call operator from left
[] 1 Subscript operator from left
- = 1 Element selector from left
! 2 Boolean NOT from right
B 2 Binary NOT from right
++ 2 Post-/Preincrement from right
- — 2 Post-/Predecrement from right
— 2 Unary minus from right
(type) 2 Type cast from right
* 2 Derefence operator from right
& 2 Address operator from right
sizeof 2 Size-of operator from right
* 3 Multiplication operator from left
/ 3 Division operator from left
% 3 Modulo operator from left
+ 1 Addition operator from left
— 1 Subtraction operator from left
<< 5 Left shift operator from left
o i) Right shift operator from left
< 6 Lower-than operator from left
<= 6 Lower-or-equal operator from left
= G Greater-than operator from left
== G Greater-or-equal operator from left
== 7 Equal operator from left
1= 7 Not-equal operator from left
& 8 Binary AND from left
) 9 Binary XOR from left
| 10) Binary OR from left
&& 11 Boolean AND from left
| 12 Boolean OR from left
T 13 Conditional operator from right
= 14 Assignment operator from right
op= 14 (perator assignment operator from right
15 Comma operator from left

Most of these operators are already known to you. However, some need some more description. First of all notice that the binary
boolean operators &, and| are of lower priority than the equality operators == and ! =. Consequently, if you want to check for bit
patternsasin

if ((pattern & MASK) == MASK) {

}
you must enclose the binary operation into parenthesi slg
The increment operators++ and = = can be explained by the following example. If you have the following statement sequence

a + 1;
a;

you can use the preincrement operator

b = ++a;

Similarly, if you have the following order of statements:

a;
a+ 1;

you can use the postincrement operator

b = a++;

Thus, the preincrement operator first increments its associated variable and then returns the new value, whereas the postincrement

operator first returns the value and then increments its variable. The same rules apply to the pre- and postdecrement operator

Function calls, nested assignments and the increment/decrement operators cause side effects when they are applied. This may introduce
compiler dependencies as the evaluation order in some situations is compiler dependent. Consider the following example which
demonstrates this:

ali] = i++

The question is, whether the old or new value of i is used as the subscript into the array a depends on the order the compiler uses to
evaluate the assignment.

The conditional operator ?: isan abbreviation for acommonly usedi f statement. For example to assign max the maximum of aand b
we can usethefollowingi f statement:

if (a>Dh)
max = a;
el se

max = b;

Thesetypesof i f statements can be shorter written as

max = (a > b) ? a: b;

The next unusual operator is the operator assignment. We are often using assignments of the following form

exprl = (exprl) op (expr?2)

for example
b= () o+ 1),

In these assignments the lefthand val ue also appears on the right side. Using informal speech we could express this as " set the value of
i to the current value of i multiplied by the sum of the value of j and 1". Using a more natural way, we would rather say ““Multiply i
with the sum of the value of j and 1". C alows us to abbreviate these types of assignments to

We can do that with almost all binary operators. Note, that the above operator assignment really implements the long form although ™j
+ 1" isnot in parenthesis.

The last unusal operator is the comma operator , . It is best explained by an example:

0;
(i += 1, i +=2, i + 3);

._
1

This operator takes its arguments and evaluates them from | eft to right and returns the value of the rightmost expression. Thus, in the
above example, the operator first evaluates i += 1" which, as a side effect, increments the value of i. Then the next expression

i += 2" isevaluated which adds 2 to i leading to avalue of 3. The third expression is evaluated and its value returned as the operator's
result. Thus, j is assigned 6.

The comma operator introduces a particular pitfall when using n-dimensional arrays with T& = 1 . A frequent error isto use a

comma separated list of indicesto try to access an element:

int matrix[10][5]; // 2-dimmatrix
int i;

matrix[1, 2]; /1 WON' T WORK!!
mat ri x[1] [2]; [l K

What actually happensin the first caseis, that the comma separated list is interpreted as the comma operator. Consequently, the result
is 2 which leads to an assignment of the address to the third five elements of the matrix!

Some of you might wonder, what C does with values which are not used. For example in the assignment statements we have seen
before,

ix = 12;
jx = 12;
kx = 12;

we have three lines which each return 12. The answer is, that C ignores values which are not used. This |eads to some strange things.
For example, you could write something like this:

ix = 1;
4711;
jx = 2;

But let's forget about these strange things. Let's come back to something more useful. Let's talk about functions.

7.1.4 Functions

AsCisaprocedural language it allows the definition of functions. Procedures are ““simulated" by functions returning ““no value". This
valueisaspecia type called voi d.

Functions are declared similar to variables, but they enclose their arguments in parenthesis (even if there are no arguments, the
parenthesis must be specified):

int sun(int to); /* Declaration of sumw th one argunent */
int bar(); /* Declaration of bar with no argunments */
void foo(int ix, int jx);

/* Declaration of foo with two argunents */

To actually define afunction, just add its body:

int sun(int to) {
int ix, ret;

ret = 0O;
for (ix =0; ix <to; ix =ix + 1)
ret = ret + ix;
return ret; /* return function's val ue */

} /¥ sum*/

C only allows you to pass function arguments by value. Conseguently you cannot change the value of one argument in the function. If
you must pass an argument by reference you must program it on your own. Y ou therefore use pointers.

7.1.5 Pointers and Arrays

One of the most common problemsin programming in C (and sometimes C++) is the understanding of pointers and arrays. In C (C++)
both are highly related with some small but essential differences. Y ou declare a pointer by putting an asterisk between the data type
and the name of the variable or function:

char *strp; /* strp is “pointer to char' */
Y ou access the content of a pointer by dereferencing it using again the asterisk:
strp ='a'; / A single character */

Asin other languages, you must provide some space for the value to which the pointer points. A pointer to characters can be used to
point to a sequence of characters: the string. Stringsin C are terminated by a special character NUL (0 or aschar i'l.. E'). Thus, you

can have strings of any length. Strings are enclosed in double quotes:
strp = "hell 0";

In this case, the compiler automatically adds the terminating NUL character. Now, strp points to a sequence of 6 characters. The first
character is"h', the second "€ and so forth. We can access these characters by an index in strp:

strp[0] [* h */
strp[1] [* e */
strp[2] [* 1 */
strp[3] [* 1 *]
strp[4] [* o */
strp[5] [* \0 */

Thefirst character also equals *strp" which can be written as ™ * (strp + 0)". This|eads to something called pointer arithmetic and
which is one of the powerful features of C. Thus, we have the following equations:

*strp == *(strp + 0) == strp[O0]
*(strp + 1) == strp[1]
*(strp + 2) == strp[2]

Note that these equations are true for any data type. The addition is not oriented to bytes, it is oriented to the size of the corresponding
pointer type!

The strp pointer can be set to other locations. Its destination may vary. In contrast to that, arrays are fix pointers. They point to a
predefined area of memory which is specified in brackets:

char str[6];
You can view str to be a constant pointer pointing to an area of 6 characters. We are not allowed to use it like this:
str = "hallo"; /* ERROR */

because this would mean, to change the pointer to point to 'h'. We must copy the string into the provided memory area. We therefore
use afunction called st r cpy() which ispart of the standard C library.

strcpy(str, "hallo"); /* Ok */

Note however, that we can use str in any case where a pointer to a character is expected, because it is a (fixed) pointer.

7.1.6 A First Program

Here we introduce the first program which is so often used: a program which prints ““Hello, world!" to your screen:

#i ncl ude <stdio. h>
/* d obal variables should be here */
/* Function definitions should be here */

i nt

mai n() {
puts("Hello, world!");
return O;

Y /* main */

Thefirst line looks something strange. Its explanation requires some information about how C (and C++) programs are handled by the
compiler. The compilation step isroughly divided into two steps. Thefirst stepis called “preprocessing” and is used to prepare raw C
code. In this case this step takes the first line as an argument to include afile called stdio.h into the source. The angle brackets just
indicate, that the file is to be searched in the standard search path configured for your compiler. Thefile itself provides some
declarations and definitions for standard input/output. For example, it declares a function called put(). The preprocessing step aso
deletes the comments.

In the second step the generated raw C code is compiled to an executable. Each executable must define afunction called main(). Itis
this function which is called once the program is started. This function returns an integer which is returned as the program'’s exit status.

Function main() can take arguments which represent the command line parameters. We just introduce them here but do not explain
them any further:

#i ncl ude <stdio. h>

i nt

mai n(int argc, char *argv[]) {
int ix;
for (ix = 0; ix < argc; ix++)
printf("My %. argunment is %\n", ix, argv[ix]);
return O;
Y /* main */

The first argument argc just returns the number of arguments given on the command line. The second argument argv is an array of
strings. (Recall that strings are represented by pointers to characters. Thus, argv isan array of pointersto characters.)

7.2 What Next?

This section is far from complete. We only want to give you an expression of what C is. We also want to introduce some basic
concepts which we will use in the following section. Some concepts of C are improved in C++. For example, C++ introduces the
concept of references which allow something similar to call by referencein function calls.

We suggest that you take your local compiler and start writing afew programs (if you are not already familiar with C, of course). One
problem for beginners often is that existing library functions are unknown. If you have a UNIX system try to use the man command to
get some descriptions. Especially you might want to try:

man gets
man printf
man puts
man scanf
man strcpy

We also suggest, that you get yourself a good book about C (or to find one of the on-line tutorials). We try to explain everything we
introduce in the next sections. However, there is nothign wrong with having some reference at hand.

NE}:’[| l_Jp| F’revir:nu5|

Next: 8 From C To Up: Introduction to Object-Oriented Programming Previous. 6 Even More Object-Oriented

P. Mueller
8/31/1997

Ne:-:t| Up| Previous

Next: 9 More on C++ Up: Introduction to Object-Oriented Programming Previous: 7 Introduction to C++

Subsections

. 8.1 Basic Extensions
o 8.1.1 Data Types
o 8.1.2 Functions

. 8.2 First Object-oriented Extensions
o 8.2.1 Classes and Objects
o 8.2.2 Constructors
o 8.2.3 Destructors

8 From C To C++

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

This section presents extensions to the C language which were introduced by C++ [6]. It also deals with object-oriented concepts and
their realization.

8.1 Basic Extensions

The following sections present extensions to already introduced concepts of C. Section 8.2 presents object-oriented extensions.

C++ adds a new comment which isintroduced by two slashes (//) and which lasts until the end of line. Y ou can use both comment styles,
for example to comment out large blocks of code:

/* C comment can include // and can span over
several lines. */
/1l [* This is the C++ style comment */ until end of line

In C you must define variables at the beginning of ablock. C++ alows you to define variables and objects at any position in a block.
Thus, variables and objects should be defined where they are used.

8.1.1 Data Types

C++ introduces a new data type called reference. Y ou can think of them asif they were ““aliases’ to ““real" variables or objects. Asan
alias cannot exist without its corresponding real part, you cannot define single references. The ampersand (&) is used to define a
reference. For example:

int ix; /* ix is "real" variable */
int & Xx = iXx; /* rx is "alias" for ix */
ix = 1; /* also rx == */
rx = 2; /* also ix == */

References can be used as function arguments and return values. This allows to pass parameters as reference or to return a “"handle" to a
calculated variable or object.

mailto:pmueller@uu-gna.mit.edu

The table 8.1 is adopted from [1] and provides you with an overview of possible declarations. It is not complete in that it shows not every
possible combination and some of them have not been introduced here, because we are not going to use them. However, these are the
ones which you will probably use very often.

Table 8.1: Declaration expressions.

Declaration NAME 18 ... Example

type name; type int count;

type namel[] ; (open) array of type int count[];

type name[n] ; array with n elements of type type | int count[3];
(name[0] , name [1], ..., name [n-1])

type *name; pointer to type int #*count;

type *namel[] ; (open) array of pointers to type int #*count[];

type * (name[1); | (open) array of pointers to type int #*(count[]);

type (#name) [J; | pointer to (open) array of type int (#*count) [];

type Ename; reference to type int &count;

type name() ; function returning type int count();

type *name() ; function returning pointer to type int #*count () ;

type * (name()) ; | function returning pointer to fype int *(count());

type (*name) () ; | pointer to function returning type int (*count) () ;

type Ename() ; function returning reference to fype | int &count () ;

In C and C++ you can use the modifier const to declare particular aspects of avariable (or object) to be constant. The next table 8.2

lists possible combinations and describe their meaning. Subsequently, some examples are presented which demonstrate the use of
const.

Table 8.2: Constant declaration expresssions.

Declaration name is ...

const type name = value; constant type

type * const name = value; constant pointer to fype

const type *name = value; (variable) pointer to constant
type

const type * const name = value; | constant pointer to constant
type

Now let's investigate some examples of contant variables and how to use them. Consider the following declarations (again from [1]):

int i; /1 just an ordinary integer
int *ip; // uninitialized pointer to
/1 integer

int * const cp = & ; /] constant pointer to integer
const int ci = 7; /1 constant integer

const int *cip; /] pointer to constant integer
const int * const cicp = &ci; // constant pointer to constant
/'l integer

The following assignments are valid:

i =ci; /] assign constant integer to integer
*cp = Ci; /|l assign constant integer to variable
/1 which is referenced by constant pointer
cip = &ci; /'l change pointer to constant integer
cip = cicp; /'l set pointer to constant integer to

/'l reference variable of constant pointer to
/] constant integer

The following assignments are invalid:

I
®

ci /'l cannot change constant integer value
*cip = 7; /'l cannot change constant integer referenced
/'l by pointer

/1 cannot change val ue of constant pointer
/1 this would allow to change val ue of

/'l constant integer *cip with *ip

cp
ip

I
o

o g
S

When used with references some peculiarities must be considered. See the following example program:

#i ncl ude <stdio. h>

int main() {

const int ci = 1;

const int &cr = ci;

int & = ci; /1 create tenporary integer for reference

[l cr =7, /1 cannot assign value to constant reference
r = 3; /'l change val ue of tenporary integer
print("ci == %, r == %\n", ci, r);

return O;

When compiled with GNU g++, the compiler issues the following warning:

conversion from “const int' to “int &' discards const

What actually happens s, that the compiler automatically creates atemporay integer variable with value of ci to which referencer is
initialized. Consequently, when changing r the value of the temporary integer is changed. Thistemporary variable lives aslong as
referencer.

Reference cr is defined as read-only (constant reference). This disablesits use on the left side of assignments. Y ou may want to remove
the comment in front of the particular line to check out the resulting error message of your compiler.

8.1.2 Functions

C++ allows function overloading as defined in section 6.3. For example, we can define two different functions max(), one which returns
the maximum of two integers and one which returns the maximum of two strings:

#i ncl ude <stdi o. h>

int max(int a, int b) {

if (a>Db) return a;
return b;

}

char *max(char *a, char * b) {
if (strcnp(a, b) > 0) return a;
return b;

}

int main() {
printf("max(19, 69) = %\ n", max(19, 69));
printf("max(abc, def) = %\n", max("abc", "def"));
return O;

}

The above example program defines these two functions which differ in their parameter list, hence, they define two different functions.
Thefirst printf() call in function main() issues acall to the first version of max(), because it takes two integers as its argument. Similarly,
the second printf() call leadsto acall of the second version of max().

References can be used to provide afunction with an alias of an actual function call argument. This enables to change the value of the
function call argument asit is known from other languages with call-by-reference parameters:

void foo(int byValue, int &yReference) {
byVal ue = 42;
byRef erence = 42;

}

void bar() {
int ix, jx;

ix =jx =1,

foo(ix, jx);

[* ix == 1, jx == 42 */
}

8.2 First Object-oriented Extensions

In this section we present how the object-oriented concepts of section 4 are used in C++.

8.2.1 Classes and Objects

C++ allows the declaration and definition of classes. Instances of classes are called objects. Recall the drawing program example of
section 5 again. There we have developed a class Point. In C++ thiswould look like this:

class Point {
int _x, _y; /1 point coordinates

public: /1 begin interface section
voi d set X(const int val);
void setY(const int val);
int getX() { return _x; }
int getY() { return _y; }
1

Poi nt apoint;

This declares a class Point and defines an object apoint. Y ou can think of a class definition as a structure definition with functions (or
“methods"). Additionally, you can specify the accessrightsin more detail. For example, _x and _y are private, because elements of
classes are private as default. Consequently, we explicitly must ““switch" the access rights to declare the following to be public. We do
that by using the keyword publ i ¢ followed by acolon: Every element following this keyword are now accessible from outside of the

class.

We can switch back to private access rights by starting a private section with pri vat e: . Thisis possible as often as needed:

cl ass Foo {
/1 private as default

public:
/1 what follows is public until
private:
/1 ... here, where we switch back to private ...
public:
/1 ... and back to public.
1

Recall that astructure st r uct isacombination of various data elements which are accessible from the outside. We are now able to
express a structure with help of a class, where al elements are declared to be public:

class Struct {
public: /1 Structure elenments are public by default
/1 elenments, nethods

};

Thisis exactly what C++ doeswith st r uct . Structures are handled like classes. Whereas elements of classes (defined with cl ass) are
private by default, elements of structures (defined with st r uct) are public. However, we can also use pr i vat e: to switch to a private
section in structures.

Let's come back to our class Point. Itsinterface starts with the public section where we define four methods. Two for each coordinate to
set and get its value. The set methods are only declared. Their actual functionality is till to be defined. The get methods have a function
body: They are defined within the class or, in other words, they are inlined methods.

This type of method definition is useful for small and simple bodies. It also improve performance, because bodies of inlined methods are
““copied" into the code wherever acall to such a method takes place.

On the contrary, callsto the set methods would result in a ““real” function call. We define these methods outside of the class declaration.
This makes it necessary, to indicate to which class a method definition belongs to. For example, another class might just define a method
setX() which is quite different from that of Point. We must be able to define the scope of the definition; we therefore use the scope
operator “::":

voi d Point::setX(const int val) {

_Xx = val;

}

voi d Point::setY(const int val) {
_y = val;

}

Here we define method setX() (setY()) within the scope of class Point. The object apoint can use these methods to set and get information
about itself:

Poi nt apoi nt;

apoi nt.set X(1); /1 Initialization
apoint.setY(1);

/1
// x is needed fromhere, hence, we define it here and
/1 initialize it to the x-coordi nate of apoint

/1

int x = apoint.getX();

The question arises about how the methods ““know" from which object they are invoked. Thisis done by implicitly passing a pointer to
the invoking object to the method. We can access this pointer within the methods ast hi s. The definitions of methods setX() and setY()
make use of classmembers_x and _y, respectively. If invoked by an object, these members are " automatically" mapped to the correct
object. We could uset hi s toillustrate what actually happens:

voi d Point::setX(const int val) {
this-> x = val; /'l Use this to reference invoking
/1 object

}

void Point::setY(const int val) {
this->_y = val;
}

Here we explicitly use the pointer t hi s to explicitly dereference the invoking object. Fortunately, the compiler automatically ““inserts"
these dereferences for class members, hence, we really can use the first definitions of setX() and setY(). However, it sometimes make
sense to know that thereisapointer t hi s available which indicates the invoking object.

Currently, we need to call the set methods to initialize a point objectlg. However, we would like to initialize the point when we define
it. We therefore use special methods called constructors.

8.2.2 Constructors

Constructors are methods which are used to initialize an object at its definition time. We extend our class Point such that it initializes a
point to coordinates (0, 0):

cl ass Point {

int _Xx, _y;
public:
Point() {
X =_y =0
}

voi d set X(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }
b

Constructors have the same name of the class (thus they are identified to be constructors). They have no return value. As other methods,
they can take arguments. For example, we may want to initialize a point to other coordinates than (0, 0). We therefore define a second
constructor taking two integer arguments within the class:

cl ass Point {
int _x, _y;

public:
Point () {
X =_y =0

}

Poi nt (const int x, const int y) {
X = X;

Yy =Y

}

voi d set X(const int val);
voi d setY(const int val);
int getX() { return _x;
int getY() { return _y;

[)

1
Constructors are implicitly called when we define objects of their classes:

Poi nt apoi nt; /1 Point::Point()
Poi nt bpoint (12, 34); /1 Point::Point(const int, const int)

With constructors we are able to initialize our objects at definition time as we have requested it in section 2 for our singly linked list. We
are now able to define a class List where the constructors take care of correctly initializing its objects.

If we want to create a point from another point, hence, copying the properties of one object to a newly created one, we sometimes have to
take care of the copy process. For example, consider the class List which alocates dynamically memory for its elements. If we want to
create a second list which is a copy of the first, we must allocate memory and copy the individual elements. In our class Point we
therefore add a third constructor which takes care of correctly copying values from one object to the newly created one:

cl ass Point {
int _x, _y;

public:
Point () {
X =_y =0
}
Poi nt (const int x, const int y) {
X = X;

Y=Y
}

Poi nt (const Point & rom {
_x = from_x;
_y = from _y;

}

voi d set X(const int val);
voi d setY(const int val);
int getX() { return _x;
int getY() { return _y;

[

}s

The third constructor takes a constant reference to an object of class Point as an argument and assigns_x and _y the corresponding values
of the provided object.

Thistype of constructor is so important that it has its own name: copy constructor. It is highly recommended that you provide for each of
your classes such a constructor, even if it isas simple asin our example. The copy constructor is called in the following cases:

Poi nt apoi nt; /1 Point::Point()
Poi nt bpoi nt (apoi nt); /1 Point::Point(const Point &)
Poi nt cpoint = apoint; /1 Point::Point(const Point &)

With help of constructors we have fulfilled one of our requirements of implementation of abstract data types: Initialization at definition
time. We still need a mechanism which automatically ““destroys' an object when it getsinvalid (for example, because of leaving its
scope). Therefore, classes can define destructors.

8.2.3 Destructors

Consider aclass List. Elements of the list are dynamically appended and removed. The constructor helps usin creating an initial empty
list. However, when we |leave the scope of the definition of alist object, we must ensure that the allocated memory is released. We
therefore define a special method called destructor which is called once for each object at its destruction time:

void foo() {
Li st alist; [l List::List() initializes to
/1 enpty list.
/1 add/renove el ements
} /] Destructor call!

Destruction of objects take place when the object leaves its scope of definition or is explicitly destroyed. The latter happens, when we
dynamically allocate an object and release it when it is no longer needed.

Destructors are declared similar to constructors. Thus, they also use the name prefixed by atilde (~) of the defining class:

class Point {

int _x, _y;
public:

Point() {
X =_y =0

}

Poi nt (const int x, const int y) {
_Xx = xval;
_y = yval;

}

Poi nt (const Point & rom {
_x = from _x;
_y = from _y;

}

~Point() { /* Nothing to do! */ }

voi d set X(const int val);

voi d setY(const int val);

int getX() { return x; }

int getY() { return _y; }
i

Destructors take no arguments. It is even invalid to define one, because destructors are implicitly called at destruction time: Y ou have no
chance to specify actual arguments.

Ne:-:t| Up| Previous

Next: 9 More on C++ Up: Introduction to Object-Oriented Programming Previous: 7 Introduction to C++
P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Next: 10 TheList - Up: Introduction to Object-Oriented Programming Previous: 8 From C To

Subsections

. 9.1 Inheritance
o 9.1.1 Types of Inheritance
o 9.1.2 Construction
o 9.1.3 Destruction
o 9.1.4 Multiple Inheritance
. 9.2 Polymorphism
. 9.3 Abstract Classes
. 9.4 Operator Overloading
. 9.5 Friends
. 9.6 How to Write a Program
o 9.6.1 Compilation Steps
o 9.6.2 A Note about Style
. 9.7 Excercises

9 More on C++

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

This section concludes our introduction to C++. We introduce ““real" object-oriented concepts and we answer the question, how a C+
+ program is actually written.

9.1 Inheritance

In our pseudo language, we formulate inheritance with “inherits from". In C++ these words are replaced by a colon. As an example
let's design aclass for 3D points. Of course we want to reuse our already existing class Point. We start designing our class as
follows:

class Point3D : public Point {
int _z;

public:

Poi nt 3D() {
set X(0);
set Y(0);
_z = 0;

}

Poi nt 3D(const int x, const int y, const int z) {
set X(x);
set Y(y);
_z = z;

}

~Point3D() { /* Nothing to do */ }

mailto:pmueller@uu-gna.mit.edu

int getz() { return _z; }
void setZ(const int val) { _z = val; }

b
9.1.1 Types of Inheritance

Y ou might notice again the keyword publ i ¢ used in thefirst line of the class definition (its signature). This is necessary because C
++ distinguishes two types of inheritance: public and private. As a default, classes are privately derived from each other.
Consequently, we must explicitly tell the compiler to use public inheritance.

The type of inheritance influences the access rights to elements of the various superclasses. Using public inheritance, everything
which isdeclared pri vat e in asuperclassremains pr i vat e in the subclass. Similarly, everything whichispubl i ¢c remains
publ i c. When using private inheritance the things are quite different asis shown in table 9.1.

Table 9.1: Accessrights and inheritance.

Type of Inheritance
private public

private private | private

protected | private | protected
public private | public

The leftmost column lists possible access rights for elements of classes. It aso includes athird type pr ot ect ed. Thistypeisused

for elements which should be directly usable in subclasses but which should not be accessible from the outside. Thus, one could say
elements of thistype are between pr i vat e and publ i ¢ elementsin that they can be used within the class hierarchy rooted by the
corresponding class.

The second and third column show the resulting access right of the elements of a superclass when the subclassiis privately and
publically derived, respectively.

9.1.2 Construction

When we create an instance of class Point3D its constructor is called. Since Point3D is derived from Point the constructor of class
Point is also called. However, this constructor is called before the body of the constructor of class Point3D is executed. In general,
prior to the execution of the particular constructor body, constructors of every superclass are called to initialize their part of the
created object.

When we create an object with

Poi nt 3D point(1, 2, 3);

the second constructor of Point3D isinvoked. Prior to the execution of the constructor body, the constructor Point() isinvoked, to
initialize the point part of object point. Fortunately, we have defined a constructor which takes no arguments. This constructor
initializes the 2D coordinates_x and _y to O (zero). As Point3D isonly derived from Point there are no other constructor calls and
the body of Point3D(const int, const int, const int) is executed. Here we invoke methods setX() and setY() to explicitly override the
2D coordinates. Subsequently, the value of the third coordinate _zis set.

Thisisvery unsatisfactory as we have defined a constructor Point() which takes two arguments to initialize its coordinates to them.
Thus we must only be able to tell, that instead of using the default constructor Point() the paramterized Point(const int, const int)
should be used. We can do that by specifying the desired constructors after asingle colon just before the body of constructor Point3D

0:
class Point3D : public Point {
public:

Point3D() { ... }

Poi nt 3D(
const int X,
const int vy,
const int z) : Point(x, y) {

_Z =1z
H
If we would have more superclasses we simply provide their constructor calls as a comma separated list. We also use this mechanism

to create contained objects. For example, suppose that class Part only defines a constructor with one argument. Then to correctly
create an object of class Compound we must invoke Part() with its argument:

cl ass Conpound ({
Part part;

public:
Conpound(const int partParaneter) : part(partParaneter) {

}
.

This dynamic initialization can also be used with built-in data types. For example, the constructors of class Point could be written as:

Point() : _x(0), _y(0) {}
Poi nt(const int x, const int y) : _x(x), _y(y) {}

Y ou should use this initialization method as often as possible, because it allows the compiler to create variables and objects correctly
initialized instead of creating them with adefault value and to use an additional assignment (or other mechanism) to set its value.

9.1.3 Destruction

If an object is destroyed, for example by leaving its definition scope, the destructor of the corresponding classisinvoked. If this
classis derived from other classes their destructors are also called, leading to arecursive call chain.

9.1.4 Multiple Inheritance

C++ adlows a class to be derived from more than one superclass, as was aready briefly mentioned in previous sections. Y ou can
easily derive from more than one class by specifying the superclasses in a comma separated list:

class Drawabl eString : public Point, public Drawabl eObject {

public:
Drawabl eString(...)
Point(...),
Dr awabl ebject (...) {

}
~Drawabl eString() { ... }

We will not use this type of inheritance in the remainder of thistutorial. Therefore we will not go into further detail here.

9.2 Polymorphism

In our pseudo language we are able to declare methods of classesto bevi r t ual , to force their evaluation to be based on object
content rather than object type. We can also use thisin C++:

cl ass Drawabl eCbj ect {
public:
virtual void print();

s
Class DrawableObject defines a method print() which isvirtual. We can derive from this class other classes:

class Point : public Drawabl ethject {
public:

voidprint() { ... }
b

Again, print() isavirtual method, because it inherits this property from DrawableObject. The function display() which is able to
display any kind of drawable object, can then be defined as:

voi d di spl ay(const Drawabl eObj ect &obj) {
/] prepare anything necessary
obj.print();

}

When using virtual methods some compilers complain if the corresponding class destructor is not declared virtual aswell. Thisis
necessary when using pointers to (virtual) subclasses when it istime to destroy them. Asthe pointer is declared as superclass
normally its destructor would be called. If the destructor is virtual, the destructor of the actual referenced object is called (and then,
recursively, all destructors of its superclasses). Here is an example adopted from [1]:

cl ass Col our {

publ i c:

virtual ~Col our();
b
class Red : public Col our {
public:

~Red() ; /1 Virtuality inherited from Col our
b
class LightRed : public Red {
public:

~Li ght Red() ;
b

Using these classes, we can define a palette as follows:;

Col our *palette[3];

pal ette[0] = new Red; /1 Dynamically create a new Red object
pal ette[1] = new Li ght Red;
pal ette[2] = new Col our;

The newly introduced operator new creates a new object of the specified type in dynamic memory and returns a pointer to it. Thus,
the first new returns a pointer to an allocated object of class Red and assignsit to the first element of array palette. The elements of
pal ette are pointers to Colour and, because Red is-a Colour the assignment is valid.

The contrary operator to newisdel et e which explicitly destroys an object referenced by the provided pointer. If we apply
del et e to the elements of palette the following destructor calls happen:

del ete palette[0];

/1 Call destructor ~Red() followed by ~Col our()
del ete palette[1];

/1 Call ~LightRed(), ~Red() and ~Col our()

del ete palette[2];

/1 Call ~Colour()

The various destructor calls only happen, because of the use of virtual destructors. If we would have not declared them virtual, each
del et e would have only called ~ Colour() (because palette]i] is of type pointer to Colour).

9.3 Abstract Classes

Abstract classes are defined just as ordinary classes. However, some of their methods are designated to be necessarily defined by
subclasses. We just mention their signature including their return type, name and parameters but not a definition. One could say, we
omit the method body or, in other words, specify “"nothing". This is expressed by appending ~"= 0" after the method signatures:

cl ass Drawabl eCbj ect {
public:

virtual void print() = O;

b

This class definition would force every derived class from which objects should be created to define a method print(). These method
declarations are also called pure methods.

Pure methods must also be declared vi r t ual , because we only want to use objects from derived classes. Classes which define pure
methods are called abstract classes.

9.4 Operator Overloading

If werecall the abstract data type for complex numbers, Complex, we could create a C++ class as follows:

cl ass Compl ex {
double _real,
_i mag;

public:
Conplex() : _real(0.0), _img(0.0) {}
Conpl ex(const doubl e real, const double inag)
_real(real), _imag(img) {}

Compl ex add(const Conpl ex op);
Conpl ex mul (const Conpl ex op);

b
We would then be able to use complex numbers and to ~"calculate" with them:

Conplex a(1.0, 2.0), b(3.5, 1.2), c;

c = a.add(b);

Here we assign ¢ the sum of a and b. Although absolutely correct, it does not provide a convenient way of expression. What we
would rather like to use is the well-known “"+" to express addition of two complex numbers. Fortunately, C++ allows us to overload
almost all of its operators for newly created types. For example, we could define a ™" +" operator for our class Complex:

cl ass Conpl ex {
public:

Conpl ex operator +(const Compl ex &op) {

double real = real + op._real,
img = _inmag + op._img;
return(Conpl ex(real, inmg));

}

. -
In this case, we have made operator + a member of class Complex. An expression of the form
c =a+ b
istransated into a method call
c = a.operator +(b);

Thus, the binary operator + only needs one argument. The first argument isimplicitly provided by the invoking object (in this case
a).

However, an operator call can also be interpreted as a usual function call, asin
c = operator +(a, b);

In this case, the overloaded operator is not amember of aclass. It is rather defined outside as a normal overloaded function. For
example, we could define operator + in this way:

cl ass Conpl ex {
public:

double real () { return _real; }
double imag() { return _imag; }

/1 No need to define operator herel!

b

Conpl ex operator +(Conplex &opl, Conplex &op2) {
double real = opl.real () + op2.real (),
img = opl.imag() + op2.imag();
return(Conpl ex(real, imag));
}

In this case we must define access methods for the real and imaginary parts because the operator is defined outside of the class's
scope. However, the operator is so closely related to the class, that it would make sense to allow the operator to access the private
members. This can be done by declaring it to be afriend of class Complex.

9.5 Friends

We can define functions or classes to be friends of a classto allow them direct access to its private data members. For example, in
the previous section we would like to have the function for operator + to have access to the private data members_real and _imag of
class Complex. Therefore we declare operator + to be afriend of class Complex:

cl ass Conpl ex {
public:

friend Conpl ex operator +(
const Conpl ex &,
const Conpl ex &

);

b
Conpl ex operator +(const Conpl ex &opl, const Conplex &op2) {
double real = opl. real + op2. _real,
imag = opl. _inag + op2._imag;
return(Conpl ex(real, inmag));
}

Y ou should not use friends very often because they break the data hiding principle in its fundamentals. If you have to use friends
very oftenit isalways asign that it is time to restructure your inheritance graph.

9.6 How to Write a Program

Until now, we have only presented parts of or very small programs which could easily be handled in one file. However, greater
projects, say, a calendar program, should be split into manageable pieces, often called modules. Modules are implemented in separate
files and we will now briefly discuss how modularization isdonein C and C++. This discussion is based on UNIX and the GNU C+
+ compiler. If you are using other constellations the following might vary on your side. Thisis especially important for those who are
using integrated development environments (IDEs), for example, Borland C++.

Roughly speaking, modules consist of two file types:. interface descriptions and implementation files. To distinguish these types, a
set of suffixes are used when compiling C and C++ programs. Table 9.2 shows some of them.

Table 9.2: Extensions and file types.

Extension(s) File Type

.h, .hxx, .hpp interface descriptions (“header”
or “include files")

. C implementation files of C

.ceg, .C, .cxx, .cpp, .c++ | implementation files of C++

.tpl interface description (tem-
plates)

In thistutorial we will use. h for header files, . cc for C++ filesand . t pl for template definition files. Even if we are writing
““only" C code, it makes senseto use . cc to force the compiler to treat it as C++. This simplifies combination of both, since the

internal mechanism of how the compiler arrange names in the program differs between both languag !

9.6.1 Compilation Steps

The compilation process takes . cc files, preprocess them (removing comments, add header fiI&e)lg and trand ates them into

object filesjg. Typical suffixesfor that filetypeare. o or . obj .

After successful compilation the set of object filesis processed by alinker. This program combine the files, add necessary libraries

@ and creates an executable. Under UNIX thisfileis called a.out if not other specified. These steps areillustrated in Figure 9.1.

Figure 9.1: Compilation steps.

comptler

With modern compilers both steps can be combined. For example, our small example programs can be compiled and linked with the
GNU C++ compiler as follows (""example.cc" isjust an example name, of course):

gcc exanpl e. cc

9.6.2 A Note about Style

Header files are used to describe the interface of implementation files. Consequently, they are included in each implementation file
which uses the interface of the particular implementation file. As mentioned in previous sections thisinclusion is achieved by a copy
of the content of the header file at each preprocessor #i ncl ude statement, leading to a “huge" raw C++ file.

To avoid the inclusion of multiple copies caused by mutual dependencies we use conditional coding. The preprocessor also defines
conditional statements to check for various aspects of its processing. For example, we can check if amacro is already defined:

#i f ndef MACRO
#defi ne MACRO /* define MACRO */
#tendi f

The lines between #i f ndef and #endi f are only included, if MACROis not already defined. We can use this mechanism to
prevent multiple copies:

/*

** Exanple for a header file which “checks' if it is

** already included. Assume, the nane of the header file
** |s “myheader. h'

*/

#i f ndef __MYHEADER H
#defi ne _ MYHEADER H

/*
** | nterface declarations go here
*/

#endif /* __ MYHEADER H */

__ MYHEADER Hisaunique name for each header file. Y ou might want to follow the convention of using the name of thefile
prefixed with two underbars. Thefirst timethefileisincluded, MYHEADER Hisnot defined, thus every lineisincluded and
processed. Thefirst line just defines amacro called MYHEADER_H. If accidentally the file should be included a second time
(while processing the sameinput file), _ MYHEADER_His defined, thus everything leading up to the #endi f is skipped.

9.7 Excercises

Polymor phism. Explain why
voi d di spl ay(const Drawabl eObj ect obj);

does not produce the desired output.

Ne:-:t| Up| Previous

Next: 10 The List - Up: Introduction to Object-Oriented Programming Previous: 8 From C To

P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Next: References Up: Introduction to Object-Oriented Programming Previous: 9 More on C++

Subsections

. 10.1 Generic Types (Templates)
. 10.2 Shape and Traversal
. 10.3 Properties of Singly Linked Lists
. 10.4 Shape Implementation
o 10.4.1 Node Templates
o 10.4.2 List Templates
. 10.5 Iterator Implementation
. 10.6 Example Usage
. 10.7 Discussion
o 10.7.1 Separation of Shape and Access Strategies
o 10.7.2 Iterators
. 10.8 Exercises

10 The List - A Case Study

Peter Mller
Globewide Network Academy (GNA)
pmueller @uu-gna.mit.edu

10.1 Generic Types (Templates)

In C++ generic data types are called class templ ates]g or just templates for short. A class template looks like anormal class
definition, where some aspects are represented by placeholders. In the forthcoming list example we use this mechanism to generate
listsfor various data types:

tenmpl ate <class T>
class List @ ... {
public:

voi d append(const T data);

};...

In the first line we introduce the keyword t enpl at e which starts every template declaration. The arguments of atemplate are
enclosed in angle brackets.

Each argument specifies a placeholder in the following class definition. In our example, we want class List to be defined for various

data types. One could say, that we want to define a class of Iia@. In this case the class of listsis defined by the type of objects
they contain. We use the name T for the placeholder. We now use T at any place where normally the type of the actual objects are
expected. For example, each list provides a method to append an element to it. We can now define this method as shown above with
useof T.

An actual list definition must now specify the type of thelist. If we stick to the class expression used before, we have to create a

mailto:pmueller@uu-gna.mit.edu

classinstance. From this class instance we can then create “real" object instances:
Li st<i nt> integerlist;

Here we create a class instance of a List which takes integers as its data el ements. We specify the type enclosed in angle brackets.
The compiler now applies the provided argument ““int" and automatically generates a class definition where the placeholder T is
replaced by int, for example, it generates the following method declaration for append():

voi d append(const int data);

Templates can take more than one argument to provide more placeholders. For example, to declare a dictionary class which provides
access to its data elements by akey, one can think of the following declaration:

tenpl ate <class K, class T>
class Dictionary {

public:

K getKey(const T from;
T get Dat a(const K key);

}
Here we use two placeholders to be able to use dictionaries for various key and data types.

Template arguments can also be used to generate parameterized class definitions. For example, a stack might be implemented by an
array of data elements. The size of the array could be specified dynamically:

tenplate <class T, int size>
class Stack {
T _store[size];
public:
s

St ack<i nt, 128> nyst ack;

In this example, mystack is a stack of integers using an array of 128 elements. However, in the following we will not use
parameterized classes.

10.2 Shape and Traversal

In the following discussion we distinguish between a data structure's shape and its traversing strategies. The first isthe “"look",
which already provides plenty information about the building blocks of the data structure.

A traversing strategy defines the order in which elements of the data structure are to be visited. It makes sense to separate the shape
from traversing strategies, because some data structures can be traversed using various strategies.

Traversing of adata structure isimplemented using iterators. Iterators guarantee to visit each dataitem of their associated data
structure in awell defined order. They must provide at least the following properties:

Current element. The iterator visits data elements one at atime. The element which is currently visited is called " current
element".

Successor function. The execution of the step to the next data element depends on the traversing strategy implemented by
the iterator. The ““successor function” is used to return the e ement which is next to be visited: It returns the successor of
the current el ement.

Termination condition. The iterator must provide a mechanism to check whether al elements are visited or not.

10.3 Properties of Singly Linked Lists

When doing something object-oriented, the first question to ask is
What are the basic building blocks of the item to implement?

Have alook at Figure 10.1, which shows alist consisting of four rectangles. Each rectangle has abullet in its middle, the first three
point to their right neighbour. Since the last rectangle have no right neighbour, there is no pointer.

Figure 10.1: Basic building blocks of asingly linked list.

First let's choose names for these building blocks. Talking of rectangles is not appropriate, because one can think of afigure using
circlesor triangles.

Within the scope of graphs the name node is used. A node contains a pointer to its successor. Thus, the list in the figure consists of
nodes, each of which has exactly one pointer associated with it.

Three types of nodes can be distinguished:

. Thefirst node (head), which has no predecessor,
. the middle nodes, which have exactly one predecessor and exactly one successor and
. thelast node (tail), which has no successor.

Note that the nodes do not carry any content. This is because the bare data structure list consists only of nodes, which are strung
together. Of course real applications need nodes, carrying some content. But in the sense of object-orientation thisis a specialization
of the nodes.

From the figure we can see, that alist can only be used with one traversing strategy: forward cursor. Initially, the head will be the
first current element. The successor function ssimply follows the pointer of the current node. The termination function checks the
current element to be the tail.

Note that it is not possible to go back nor to start in the middie of the list. The latter would contradict the requirement, that each
element must be visited.

The next question is, what are the operations offered by alist? A list only defines two well known nodes head and tail. Let's have a
deeper ook to them.

A new node can be put-in-front of the list such that:

. itspointer is set to the current head,

. the new node becomes the new head.
Similarly, a new node can easily be appended to the tail:

. thetail pointer is set to the new node,
. the new node becomes the new tail.

Theinverse function to put in front is delete-from-front:

. the successor node of the head becomes the new head,
. theformerly head nodeis discarded.

Y ou should be able to figure out why thereis no cheap inverse append function.

Finally, there exist three other cheap primitives, whose meaning is straight forward. Thus, we will not examine them any further.
However, we present them here for completeness:

. get-first: returns the (data of the) head node,
. get-last: returns the (data of the) tail node and
. is-empty: returns whether thelist is empty or not.

10.4 Shape Implementation

10.4.1 Node Templates

The basic building block of alist isthe node. Thus, let'sfirst declare aclassfor it. A node has nothing more than a pointer to
another node. Let's assume, that this neighbour is always on the right side.

Have alook at the following declaration of class Node.

cl ass Node {
Node *_right;

publi c:
Node(Node *right = NULL) : _right(right) {}
Node(const Node &val) : _right(val._right) {}

const Node *right() const { return _right; }
Node *&right() { return _right; }

Node &operator =(const Node &val) {
_right = val. _right;
return *this;

}

const int operator ==(const Node &val) const {
return _right == val. _right;

}

const int operator !=(const Node &val) const {
return I'(*this == val);

}

b

A look to the first version of method right() containsaconst just before the method body. When used in this position, const
declares the method to be constant regarding the elements of the invoking object. Consequently, you are only alowed to use this
mechanism in method declarations or definitions, respectively.

Thistype of const modifier is also used to check for overloading. Thus,

cl ass Foo {

int foo() const;
int foo();
b

declare two different methods. The former is used in constant contexts whereas the second is used in variable contexts.

Although template class Node implements a ssmple node it seems to define plenty of functionality. We do this, becauseit is good
practice to offer at least the following functionality for each defined data type:

. Copy Constructor. The copy constructor is heeded to allow definition of objects which areinitialized from already existing
ones.

. operator =. Each object should know how to assign other objects (of the same type) to itself. In our example class, thisis
simply the pointer assignment.

. operator ==. Each object should know how to compare itself with another object.

The unequality operator !="isimplemented by using the definition of the equality operator. Recall, that t hi s pointsto the
invoking object, thus,

Node a, b;

if (a!= b)

would result in acall to operator !=() witht hi s set to the address of a. We dereferencet hi s using the standard dereference
operator ~*". Now, *t hi s isan object of class Node which is compared to another object using operator ==(). Consequently, the
definition of operator ==() of class Node is used. Using the standard boolean NOT operator ~*!" we negate the result and obtain the
truth value of operator !=().

The above methods should be available for each class you define. This ensures that you can use your objects as you would use any
other objects, for example integers. If some of these methods make no sense for whatever reason, you should declare themin a
private section of the classto explicitly mark them as not for public use. Otherwise the C++ compiler would substitute standard
operators.

Obviously, real applications require the nodes to carry data. As mentioned above, this means to specialize the nodes. Data can be of
any type, hence, we are using the template construct.

tenpl ate <class T>
cl ass DataNode : public Node {
T _data;

public:
Dat aNode(const T data, DataNode *right = NULL)
Node(right), _data(data) {}
Dat aNode(const Dat aNode &val)
Node(val), _data(val._data) {}

const Dat aNode *right() const {
return((Dat aNode *) Node::right());

}
Dat aNode *&right() { return((DataNode *& Node::right()); }

const T &data() const { return _data; }
T &data() { return _data; }

Dat aNode &operator =(const DataNode &val) {
Node: : operator =(val);
_data = val . _data;
return *this;

}
const int operator ==(const DataNode &val) const {
return(
Node: : operator ==(val) &&
_data == val . _data);
}
const int operator !=(const DataNode &val) const {
return !'(*this == val);
}

b

The above template DataNode simply specializes class Node to carry data of any type. It adds functionality to access its data element
and also offers the same set of standard functionality: Copy Constructor, operator =() and operator ==(). Note, how we reuse
functionality already defined by class Node.

10.4.2 List Templates

Now we are able to declare the list template. We also use the template mechanism here, because we want the list to carry data of
arbitrary type. For example, we want to be able to define alist of integers. We start with an abstract class template ListBase which
functions as the base class of al other lists. For example, doubly linked lists obviously share the same properties like singly linked
lists.

tenpl ate <class T>
cl ass ListBase {
public:
virtual ~ListBase() {} // Force destructor to be
/1 virtual
virtual void flush() = 0;

virtual void putlnFront(const T data) = O;
virtual void append(const T data) = O;
virtual void del FronFront () = O;

virtual const T &getFirst() const = O;
virtual T &getFirst() = O;
virtual const T &getlast() const = 0;
virtual T &getlast() = O;

virtual const int isEnpty() const = O;

b

What we actually do isto describe the interface of every list by specifying the prototypes of required methods. We do that for every
operation we have identified in section 10.3. Additionally, we also include a method flush() which alows us to delete all elements of

alist.

For operations get-first and get-last we have declared two versions. Oneisfor use in a constant context and the other in avariable
context.

With this abstract class template we are able to actually define our list class template:

tenpl ate <class T>

class List : public ListBase<T> {
Dat aNode<T> * head, * tail;

public:
List() : _head(NULL), _tail (NULL) {}
Li st(const List &val) : _head(NULL), _tail (NULL) {
*this = val;
}

virtual ~List() { flush(); }
virtual void flush();

virtual void putlnFront(const T data);
virtual void append(const T data);
virtual void del FronFront();

virtual const T &getFirst() const { return _head->data(); }
virtual T &getFirst() { return _head->data(); }

virtual const T &getlLast() const { return _tail->data(); }
virtual T &getlast() { return _tail->data(); }

virtual const int isEnpty() const { return _head == NULL; }

Li

st &operator =(const List &val) {
flush();

Dat aNode<T> *wal kp = val . _head;

whil e (wal kp) append(wal kp->data());
return *this;

}

const int operator ==(const List &val) const {
if (isEnmpty() && val.isEmpty()) return 1;
Dat aNode<T> *t hi sp = _head,
*val p = val . _head,;
while (thisp &k valp) {
if (thisp->data() != valp->data()) return O;
thisp = thisp->right();
val p = val p->right();

}
return 1;

}

const int operator !=(const List &al) const {
return !'(*this == val);

}

friend class Listlterator<T>;

b

The constructors initialize the list's elements _head and _tail to NULL which isthe NUL pointer in C and C++. Y ou should know
how to implement the other methods from your programming experience. Here we only present the implementation of method
putlnFront():

tenmpl ate <class T> void

Li st<T>::putlnFront(const T data) {
_head = new Dat aNode<T>(data, _head);
if (! _tail) _tail = _head;

} /* putlnFront */

If we define methods of a class template outside of its declaration, we must also specify thet enpl at e keyword. Again we use the
new operator to create a new data node dynamically. This operator allows initialization of its created object with arguments enclosed

in parenthesis. In the above example, new creates a new instance of class DataNode™ T—* . Consequently, the corresponding

constructor is called.

Also notice how we use placeholder T. If we would create a class instance of class template List, say, List™= int=" thiswould also

cause creation of aclassinstance of class template DataNode, viz DataNode™ int=" .

Thelast line of the class template declaration declares class template Listlterator to be afriend of List. We want to separately define
the list'siterator. However, it is closely related, thus, we allow it to be afriend.

10.5 Iterator Implementation

In section 10.2 we have introduced the concept of iterators to traverse through a data structure. Iterators must implement three
properties:

. Current e ement.
. Successor function.
. Termination condition.

Generally speaking, the iterator successively returns data associated with the current element. Obviously, there will be a method, say,
current() which implements this functionality. The return type of this method depends on the type of data stored in the particular data

structure. For example, when iterating over List== int—=" the return type should bei nt .

The successor function, say, succ(), uses additional information which is stored in structural elements of the data structure. In our list
exampl e, these are the nodes which carry the data and a pointer to their right neighbour. The type of the structural elements usually

differs from that of the raw data. Consider again our List*™~ int—=~ where succ() must use DataNode™ int=" as structural elements.

The termination condition is implemented by a method, say, terminate(), which returns TRUE if (and only if) all data elements of the
associated data structure have been visited. Aslong as succ() can find an element not yet visited, this method returns FALSE.

Again we want to specify an abstract iterator class which defines properties of every iterator. The thoughts above lead to the
following declaration:

tenmpl ate <cl ass Data, class El enent>
class Iterator {

pr ot ect ed:
El ement _start,
_current;
publi c:

Iterator(const Element start)
_start(start), _current(start) {}
Iterator(const lterator &val)
_start(val._start), _current(val._current) {}
virtual ~lterator() {}

virtual const Data current() const = O;
virtual void succ() = 0;
virtual const int term nate() const = O;

virtual void rewind() { _current = _start; }

Iterator &operator =(const lterator &val) ({
_start = val. _start;
_current = val._current;
return *this;

}

const int operator ==(const Iterator &val) const {

return(_start == val. _start &% _current == val. _current);
}
const int operator !=(const Iterator &val) const {

return !'(*this == val);
}

b

Again we use the template mechanism to allow the use of the iterator for any data structure which stores data of type Data and which
uses structural elements of type Element. Each iterator ~"knows" a starting (structural) element and the current element. We make
both accessible from derived classes because derived iterators need access to them to implement the following iterator properties.

Y ou should already understand how the constructors operate and why we force the destructor to be virtual.

Subsequently we specify three methods which should implement the three properties of an iterator. We also add a method rewind()
which simply sets the current element to the start element. However, complex data structures (for example hash tables) might require
more sophisticated rewind algorithms. For that reason we also specify this method to bevi r t ual , allowing derived iterators to
redefine it for their associated data structure.

The last step in the iterator implementation process is the declaration of the list iterator. Thisiterator is highly related to our class
template List, for example, it is clear that the structural elements are class templates DataNode. The only ““open" typeis the one for
the data. Once again, we use the template mechanism to provide list iterators for the different list types:

tenmpl ate <class T>
class Listlterator : public Iterator<T, DataNode<T> *> {
public:

Listlterator(const List<T> & ist)
I terator<T, DataNode<T> *>(list._head) {}
stlterator(const Listlterator &val)
I terator<T, DataNode<T> *>(val) {}

Li

virtual const T current() const { return _current->data(); }
virtual void succ() { _current = current->right(); }
virtual const int termnate() const {

return _current == NULL,
}

T &operator ++(int) {
T & np = _current->data();

succ();
return tnp;
}
Listlterator &operator =(const Listlterator &val) {

I terator<T, DataNode<T> *>::operator =(val);
return *this;

}
b

The classtemplate Listlterator is derived from Iterator. The type of datais, of course, the type for which the list iterator is declared,
hence, we insert placeholder T for the iterator's data type Data. The iteration process is achieved with help of the structural elements

of type DataNode. Obviously the starting element is the head of thelist _head which is of type DataNode™ T-" *. We choose this
type for the element type Element.

Note that the list iterator actually hides the details about the structural elements. This type highly depends on the implementation of
the list. For example, if we would have chosen an array implementation, we may have used integers as structural €l ements where the
current element isindicated by an array index.

The first constructor takes the list to traverse as its argument and initializes its iterator portion accordingly. As each Listlterator <T

= isafriend of List™ T=" it has accessto the list's private members. We use thisto initialize the iterator to point to the head of
thelist.

We omit the destructor because we do not have any additional data members for the list iterator. Consequently, we do nothing
special for it. However, the destructor of classtemplate Iterator is called. Recall that we have to define this destructor to force
derived classes to also have avirtual one.

The next methods just define the required three properties. Now that we have structural elements defined as DataNode™ T—* * we

use them as follows:

. the current element is the data carried by the current structural element,
. the successor function isto set the current structural element to its right neighbour and
. thetermination condition isto check the current structural element if it isthe NULL pointer. Note that this can happen only
in two cases:
1
Thelist isempty. In this case the current element is already NULL becausethe list'shead head isNULL.
2.
The current element reached the last element. In this case the previous successor function call set the current
element to the right neighbour of the last element which is NULL.

We have also included an overloaded postincrement operator ~*++". To distinguish this operator from the preincrement operator, it
takes an additional (anonymous) integer argument. As we only use this argument to declare a correct operator prototype and because
we do not use the value of the argument, we omit the name of the argument.

The last method is the overloaded assignment operator for list iterators. Similar to previous assignment operators, we just reuse
aready defined assignments of superclasses; Iterator < T ::operator =() in this case.

The other methods and operators, namely rewind(), operator ==() and operator !=() are al inherited from class template Iterator.

10.6 Example Usage

The list template as introduced in previous sections can be used as follows:

i nt

main() {
List<int> |ist;
int ix;

for (ix = 0; ix < 10; ix++) list.append(ix);

Listlterator<int> iter(list);

while (liter.termnate()) {
printf("%l ", iter.current());
iter.succ();

}

puts("");

return O;

Aswe have defined a postincrement operator for the list iterator, the loop can also be written as:

while (liter.term nate())
print("% ", iter++);

10.7 Discussion

10.7.1 Separation of Shape and Access Strategies

The presented example focusses on an object-oriented view. In real applications singly linked lists might offer more functionality.
For example, insertion of new data items should be no problem due to the use of pointers:

Take the successor pointer of the new element and set it to the element which should become its right neighbour,

Take the successor pointer of the element after which the new element should be inserted and set it to the new element.

Two simple operations. However, the problem is to designate the element after which the new element should be inserted. Again, a
mechanism is needed which traverse through the list. Thistime, however, traversion stops at a particular element: It is the element
where thelist (or the data structure) is modified.

Similar to the existence of different traversing strategies, one can think of different modification strategies. For example, to create a
sorted list, where elements are sorted in ascending order, use an ascending modifier.

These modifiers must have accessto the list structural elements, and thus, they would be declared as friends as well. Thiswould lead
to the necessity that every modifier must be afriend of its data structure. But who can guarantee, that no modifier is forgotten?

A solution is, that modification strategies are not implemented by ““external” classes asiterators are. Instead, they are implemented
by inheritance. If asorted list is needed, it is a specialization of the general list. This sorted list would add a method, say insert(),
which inserts anew element according to the modification strategy.

To make this possible, the presented list template must be changed. Because now, derived classes must have access to the head and
tail node to implement these strategies. Consequently, head and _tail should be pr ot ect ed.

10.7.2 lterators

The presented iterator implementation assumes, that the data structure is not changed during the use of an iterator. Consider the
following example to illustrate this:

List<int> ilist;
int ix;

for (ix =1; ix < 10; ix++)
ilist.append(ix);

Listlterator<int> iter(ilist);

while (liter.termnate()) {
printf("% ", iter.current());
iter.succ();

}

printf("\n");
ilist.putlnFront(0);
iter.rew nd();

while (liter.termnate()) {

printf("% ", iter.current());
iter.succ();

}
printf("\n");

This code fragment prints

o
NN
w w
A b
(53
oo
~N ~
0 o
© ©

instead of

[l
=N
N W
w b
A~ O
(62)]
[e2 BN
~ 00
o ©

Thisis dueto the fact, that our list iterator only stores pointersto the list structural elements. Thus, the start element _start isinitialy
set to point to the location where the list's head node _head points to. This simply leads to two different pointers referencing the same
location. Consequently, when changing one pointer asit is done by invoking putinFront() the other pointer is not affected.

For that reason, when rewinding the iterator after putlnFront() the current element is set to the start element which was set at the time

theiterator constructor was called. Now, the start element actually references the second element of the list.

10.8 Exercises

1
Similar to the definition of the postincrement operator in class template Listlterator, one could define a preincrement
operator as:
T &operator ++() {
succ();
return _current->data();
}
What problems occur?
2.
Add the following method
int renove(const T &data);
to classtemplate List. The method should delete the first occurrence of data in the list. The method should return 1 if it
removed an element or O (zero) otherwise.
What functionality must data provide? Remember that it can be of any type, especially user defined classes!
3.
Derive a class template CountedList from List which countsits elements. Add a method count() of arbitrary type which
returns the actual number of elements stored in thelist. Try to reuse as much of List as possible.
4,

Regarding the iterator problem discussed in section 10.7. What are possible solutions to allow the list to be altered while an

iterator of itisin use?

Next| Up| F’reviﬂu5|

Next: References Up: Introduction to Object-Oriented Programming Previous: 9 More on C++

P. Mudller
8/31/1997

Next| Up| F’reviﬂu5|

Next: A Solutionsto the Up: Introduction to Object-Oriented Programming Previous: 10 The List -

References

Borland International, Inc.
Programmer's Guide.
Borland International, Inc., 1993.

Ute Claussen.

Objektorientiertes Programmieren.
Springer Verlag, 1993.

ISBN 3-540-55748-2.

William Ford and William Topp.
Data Structures with C++.
Prentice-Hall, Inc., 1996.

ISBN 0-02-420971-6.

Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, Inc., 1977.

Dennis M. Ritchie.
The Development of the C Language.

In Second History of Programming Languages conference, Cambridge, Mass., Apr. 1993.

Bjarne Stroustrup.

The C++ Programming Language.
Addison-Wesley, 2nd edition, 1991.
ISBN 0-201-53992-6.

Next| Up| F’reviﬂu5|

Next: A Solutionsto the Up: Introduction to Object-Oriented Programming Previous. 10 The List -

P. Mudller
8/31/1997

http://sf.www.lysator.liu.se/c/chistory.ps

Next| Up| F’reviﬂu5|

Next: About this document ... Up: Introduction to Object-Oriented Programming Previous: References

Subsections

. A.1 A Survey of Programming Techniques
. A.2 Abstract Data Types

. A.3 Object-Oriented Concepts

. A.4 More Object-Oriented Concepts

. A.5Moreon C++

. A6Thelist- A Case Study

A Solutions to the Exercises

This section presents exampl e solutions to the exercises of the previous lectures.

A.1 A Survey of Programming Techniques

1
Discussion of module Singly-Linked-List-2.
@
Interface definition of module Integer-List
MODULE | nt eger - Li st
DECLARE TYPE int _|ist_handle_t;
int_list handle_t int_list _create();
BOOL int_list _append(int_list_handle_t this,
int data);
INTEGER int _list _getFirst(int_list_handle_t this);
INTEGER int_list _getNext(int_list _handle_t this);
BOOL int _list isEnmpty(int_list _handle_t this);
END I nt eger-Li st;
This representation introduces additional problems which are caused by not separating traversal from data
structure. Asyou may recall, to iterate over the elements of the list, we have used aloop statement with the
following condition:
VWHI LE data IS VALID DO
Data wasiinitialized by acall to list_getFirst(). Theinteger list procedureint_list_getFirst() returns an integer,
consequently, there is no such thing like an ““invalid integer" which we could use for loop termination checking.
2.

Differences between object-oriented programming and other techniques. In object-oriented programming objects exchange
messages with each other. In the other programming techniques, data is exchanged between procedures under control of a
main program. Objects of the same kind but each with its own state can coexist. This contrasts the modular approach where
each module only has one global state.

A.2 Abstract Data Types

ADT Integer.

@

(b)

Both operations add and sub can be applied for whatever valueis hold by N. Thus, these operations can be
applied at any time: There is no restriction to their use. However, you can describe this with a precondition
which egualstrue.

We define three new operations as requested: mul, div and abs. The latter should return the absolute value of the
integer. The operations are defined as follows:

mul (k)
di v(k)
abs()

The operation mul does not require any precondition. That's similar to add and sub. The postcondition is of
courseres = N*k. The next operation div requires k to be not 0 (zero). Consequently, we define the following
precondition: k not equal 0. The last operation abs returns the value of N if N ispositiveor O or -N if N is
negative. Again it does not matter what value N has when this operation is applied. Here is its postcondition:

if N>=0then

else

ADT Fraction.

@

(b)

(©

A simple fraction consists of numerator and denominator. Both are integer numbers. Thisis similar to the
complex number example presented in the section. We could choose at least two data structures to hold the
values: an array or arecord.

Interface layout. Remember that the interfaceis just the set of operations viewabl e to the outside world. We
could describe an interface of afraction in averbal manner. Consequently, we need operations:

=« to get the value of nominator/denominator,

» 10 set the value of nominator/denominator,

« toadd afraction returning the sum,

« to subtract afraction returning the difference,

Here are some axioms and preconditions for each fraction which aso hold for the ADT:
« The denominator must not equal 0 (zero), otherwise the value of the fraction is not defined.
« If the nominator is O (zero) the value of the fraction is O for any value of the denominator.
» Each whole number can be represented by afraction of which the nominator is the number and the
denominator is 1.

ADTs define properties of a set of instances. They provide an abstract view to these properties by providing a set of
operations which can be applied on the instances. It is this set of operations, the interface, which defines properties of the
instances. The use of an ADT isrestricted by axioms and preconditions. Both define conditions and properties of an
environment in which instances of the ADT can be used.

We need to state axioms and to define preconditions to ensure the correct use of instances of ADTs. For example, if we do
not declare 0 to be the neutral element of the addition of integers, there could be an ADT Integer which do something

weird when adding 0 to N. Thisis not what is expected from an integer. Thus, axioms and preconditions provide a means
to ensure that ADTs ~“function" as we wish them to.

Description of relationships.

@

(b)

(©

Aninstanceis an actual representative of an ADT. It isthusan ~“example" of it. Wherethe ADT declareto use a
““signed whole number" as its data structure, an instance actually holds avalue, say, ~*-5".

Generic ADTs define the same properties of their corresponding ADT. However, they are dedicated to another
particular type. For example, the ADT List defines properties of lists. Thus, we might have an operation append
(elem) which appends a new element elemto the list. We do not say of what type elem actualy is, just that it will
be the last element of the list after this operation. If we now use ageneric ADT List the type of thiselement is
known: it's provided by the generic parameter.

Instances of the same generic ADT could be viewed as “siblings". They would be “*cousins" of instances of
another generic ADT if both generic ADTs share the same ADT.

A.3 Object-Oriented Concepts

Class.

@

(b)

A classisthe actual implementation of an ADT. For example, an ADT for integers might include an operation
set to set the value of itsinstance. This operation isimplemented differently in languages such as C or Pascal. In
C the equal sign “"=" defines the set operation for integers, whereas in Pascal the character string “™:=" is used.
Consequently, classes implement operations by providing methods. Similarly, the data structure of the ADT is
implemented by attributes of the class.

Class Complex

class Compl ex {
attributes:

Real real
i magi nary
net hods:
: =(Conpl ex c¢) /* Set value to the one of ¢ */

Real real Part ()

Real i magi naryPart ()
Conpl ex +(Conpl ex c)
Conpl ex - (Conpl ex c)
Conpl ex / (Conpl ex c)
Conpl ex *(Conpl ex c)

We choose the well-known operator symbols “"+" for addition, *"-" for subtraction, /" for division and ~™*" for
multiplication to implement the corresponding operations of the ADT Complex. Thus, objects of class Complex
can be used like:

Compl ex c1, c2, c3
c3 :=¢c¢cl + c2

Y ou may notice, that we could write the addition statement as follows:

c3 :=cl. +(c2)

Y ou may want to replace the " +" with ““add" to come to a representation which we have used so far. However,
you should be able to understand that " +" is nothing more than a different name for ~“add".

2.

Interacting objects.
3.

Object view.
4.

Messages.

@

Objects are autonomous entities which only provide a well-defined interface. We'd like to talk of objects as if
they are active entities. For example, objects “are responsible” for themselves, “"they" might deny invocation of
amethod, etc.. This distinguishes an object from amodule, which is passive. Therefore, we don't speak of
procedure calls. We speak of messages with which we ““ask" an object to invoke one of its methods.

(b)
The Internet provides several objects. Two of the most well known ones are “client" and ™~ server”. For example,
you use an FTP client (object) to access data stored on an FTP server (object). Thus, you could view this asif the
client ““sends a message" to the server asking for providing data stored there.

(©

In the client/server environment we really have two remotely acting entities: the client and server process.
Typically, these two entities exchange datain form of Internet messages.

A.4 More Object-Oriented Concepts

Inheritance.

@

Definition of class Rectangle:

class Rectangle inherits from Point {
attributes:

int _wdth, /1 Wdth of rectangle
_hei ght /1 Height of rectangle
nmet hods:
setWdth(int neww dt h)
get W dt h()
set Hei ght (i nt newHei ght)
get Hei ght ()

}

In this example, we define arectangle by its upper left corner (coordinates as inherited from Point) and its
dimension. Alternatively, we could have defined it by its upper left and lower right corner.

We add access methods for the rectangle's width and height.

(b)
3D objects. A sphereis defined by acenter in 3D space and aradius. The center isa point in 3D space, thus, we
can define class Sphere as:

cl ass Sphere inherits from 3D Point {
attributes:
int _radius;

nmet hods:
set Radi us(i nt newRadi us)
get Radi us()

}

Thisissimilar to the circle class for 2D space. Now, 3D-Point is just a Point with an additional dimension:

class 3D Point inherits from Point {
attributes:
int _z;

nmet hods:
setZ(int newZz);
get Z();

}

Consequently, 3D-Point and Point are related with ais-a relationship.

(©
Functionality of move(). move() as defined in the section allows 3D objects to move on the X-axis, thus only in
one dimension. It does this, by modifying only the 2D part of 3D objects. This 2D part is defined by the Point
classinherited directly or indirectly by 3D objects.
(d)
Inheritance graph (see Figure A.1).
Figure A.1: Inheritance graph of some drawable objects.
DrawableObject
Point
Rectangle Circle 3D-Point
Sphere
(e)

Alternative inheritance graph. In this example, class Sohere inherits from Circle and simply adds a third
coordinate. This has the advantage that a sphere can be handled like a circle (for example, its radius can easily be
modified by methods/functions which handle circles). It has the disadvantage, that it *“distributes’ the object's

handle (the center point in 3D space) over the inheritance hierarchy: from Point over Circle to Sphere. Thus, this
handle is not accessible asawhole.

Multiple inheritance. The inheritance graph in Figure 5.9 obviously introduces naming conflicts by properties of class A.

However, these properties are uniquely identified by following the path from D up to A. Thus, D can change properties of
A inherited by B by following the inheritance path through B. Similarly, D can change properties of A inheritied by C by
following the inheritance path through C. Consequently, this naming conflict does not necessarily lead to an error, as long
asthe paths are designated.

A.5 More on C++

Polymorphism. When using the signature
voi d di spl ay(const Drawabl eCbj ect obj);

First note, that in C++ function or method parameters are passed by value. Conseguently, obj would be a copy of the actual
provided function call argument. This means, that DrawableObject must be a class from which objects can be created. This
isnot the case, if DrawableObject is an abstract class (asit is when print() is defined as pure method.)

If there exists avirtual method print() which is defined by class DrawableObject, then (as obj is only a copy of the actual
argument) this method isinvoked. It is not the method defined by the class of the actual argument (because it does no
longer play any significant role!)

A.6 The List - A Case Study

Preincrement operator for iterators. The preincrement operator as defined in the exercise does not check for validity of
_current. As succ() might set its value to NULL this may cause access to this NULL-pointer and, hence, might crash the
program. A possible solution might be to define the operator as:

T &operator ++() {

succ();

return(_current ? _current->data() : (T) 0);
}

However, this does not function as we now assume something about T. It must be possible to cast it to akind of ,,NULL™
value.

Addition of remove method. We don't give the code solution. Instead we give the algorithm. The method remove() must
iterate over thelist until it reaches an element with the requested dataitem. It then deletes this element and returns 1. If the
listis empty or if the dataitem could not be found, it return O (zero).

During the iteration, remove() must compare the provided data item successively with those in the list. Consequently, there
might exist a comparison like:

if (data == current->data()) {
/1 found the item

}

Here we use the equation operator ,,=="" to compare both data items. As these items can be of any type, they especially can
be objects of user defined classes. The question is: How is ,,equality™” defined for those new types? Consequently, to allow
remove() to work properly, the list should only be used for types which define the comparison operator (namely, ,,==""

and ,,!="") properly. Otherwise, default comparisons are used, which might lead to strange resullts.

Class CountedList. A counted list isalist, which keeps track of the number of elementsinit. Thus, when adataitemis
added, the number isincremented by one, when anitemis deleted it is decremented by one. Again, we do not give the
complete implementation, we rather show one method (append()) and how it is altered:

class CountedList : public List {

int _count; /'l The nunber of elenents
publi c:
virtual void append(const T data) {
_count ++; /[l Increnent it and ...
Li st::append(data); // ... use list append

}

Not every method can be implemented this way. In some methods, one must check whether _count needs to be atered or
not. However, the main ideais, that each list method is just expanded (or specialized) for the counted list.

Iterator problem. To solve the iterator problem one could think of a solution, where the iterator stores areferenceto its
corresponding list. At iterator creation time, this reference is then initialized to reference the provided list. The iterator
methods must then be modified to use this reference instead of the pointer _start.

Ne:-:t| Up| Previous

Next: About this document ... Up: Introduction to Object-Oriented Programming Previous: References

P. Mueller
8/31/1997

Next| Up| F’reviﬂu5|

Up: Introduction to Object-Oriented Programming Previous: A Solutionsto the

About this document ...

Introduction to
Object-Oriented Programming
Using C++

This document was generated using the LaT eX2HTM. translator Version 97.1 (release) (July 13th, 1997)

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University of Leeds.

The command line arguments were:

latex2html -split +1 -htm _version 3.0 -show section_nunbers -bottom navigation -t
Introduction to Object-Oriented Progranmming -antialias -toc_stars -local icons tutorial.
t ex.

The trangdlation was initiated by P. Mueller on 8/31/1997

Next| Up| F’reviﬂu5|

Up: Introduction to Object-Oriented Programming Previous. A Solutions to the

P. Mueller
8/31/1997

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html

..cals
We don't regard parallelism here.

Not all real languages provide such atype. In C this can be emulated with pointers.

...language
Y ou might ask, why we should declare an Integer classif thereis already an integer type available. We come back to this
when we talk about inheritance.

-[2]
This book isonly available in German. However, since thisis one of the best books about object-oriented programming |
know of, | decided to citeit here.

...point
We use lowercase | etters when we talk at the object level.

...Characters
Don't argue whether such a method makes really sense or not. It isjust introduced for illustrating purposes.

...parenthesis
Thisisdueto ahistorical “accident" while developing C [5].

...object
In the following we will drop the word ™" object" and will speak of ““the point".

...languages
Thisisdueto the fact that C++ supports function polymorphism. Therefore the name mangling must take function
parameters into account.

.files)

This also creates an intermediary preprocessed raw C++ file. A typical suffixis. i .

files
This has nothing to do with objects in the object-oriented sense.

.libraries
For example, standard functions such as printf() are provided this way.

...templates
C++ aso allows the definition of function templates. However, as we do not use them, we will not explain them any
further.

lists
Do not mix up this use of “class" with the “class definition" used before. Here we mean with “class" a set of class
definitions which share some common properties, or a *“class of classes'.

P. Mueller
8/31/1997

