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Preface 

  The first course Object-Oriented Programming Using C++ was held in Summer 1994 and was based on a simple ASCII tutorial. 
After a call for participation, several highly motivated people from all over the world joined course coordinator Marcus Speh as 
consultants and had pushed the course to its success. Besides of the many students who spend lots of their time to help doing 
organizational stuff. 

Then, the ``bomb''. The original author of the used ASCII tutorial stands on his copyright and denies us to reuse his work. 
Unfortunately, Marcus was unable to spend more time on this project and so the main driving force was gone. 

My experiences made as consultant for this first course have lead to my decision that the course must be offered again. So, in 
Summer 1995 I've just announced a second round, hoping that somehow a new tutorial could be written. Well, here is the result. I 
hope, that you find this tutorial useful and clear. If not, please send me a note. The tutorial is intended to be a group work and not a 
work of one person. It is essential, that you express your comments and suggestions. 

The course and the tutorial could have only been realized with help of many people. I wish to thank the people from the Globewide 
Network Academy (GNA), especially Joseph Wang and Susanne Reading. 

Ricardo Nassif and David Klein provide me with suggestions to improve the readability of the tutorial. 

The complete tutorial is available free of charge in PostScript in both US letter and DIN A4 paper formats. Please check out http://

www.zib.de/mueller/Course/Tutorial/Postscript/ . 

Berlin, Germany 
Peter Müller 
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1 Introduction 

  This tutorial is a collection of lectures to be held in the on-line course Introduction to Object-Oriented Programming Using C++ . 

In this course, object-orientation is introduced as a new programming concept which should help you in developing high quality 
software. Object-orientation is also introduced as a concept which makes developing of projects easier. However, this is not a course 
for learning the C++ programming language. If you are interested in learning the language itself, you might want to go through other 
tutorials, such as C++: Annotations by Frank Brokken and Karel Kubat. In this tutorial only those language concepts that are needed 

to present coding examples are introduced. And what makes object-orientation such a hot topic? To be honest, not everything that is 
sold under the term of object-orientation is really new. For example, there are programs written in procedural languages like Pascal 
or C which use object-oriented concepts. But there exist a few important features which these languages won't handle or won't handle 
very well, respectively. 

Some people will say that object-orientation is ``modern''. When reading announcements of new products everything seems to be 
``object-oriented''. ``Objects'' are everywhere. In this tutorial we will try to outline characteristics of object-orientation to allow you 
to judge those object-oriented products. 

The tutorial is organized as follows. Chapter 2 presents a brief overview of procedural programming to refresh your knowledge in 

that area. Abstract data types are introduced in chapter 3 as a fundamental concept of object-orientation. After that we can start to 

define general terms and beginning to view the world as consisting of objects (chapter 4). Subsequent chapters present fundamental 

object-oriented concepts (chapters 5 and 6). Chapters 7 through 9 introduce C++ as an example of an object-oriented programming 

language which is in wide-spread use. Finally chapter 10 demonstrates how to apply object-oriented programming to a real example. 
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2 A Survey of Programming Techniques 
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This chapter is a short survey of programming techniques. We use a simple example to illustrate the particular properties and to point 
out their main ideas and problems. 

Roughly speaking, we can distinguish the following learning curve of someone who learns to program: 

●     Unstructured programming, 
●     procedural programming, 
●     modular programming and 
●     object-oriented programming. 

This chapter is organized as follows. Sections 2.1 to 2.3 briefly describe the first three programming techniques. Subsequently, we 

present a simple example of how modular programming can be used to implement a singly linked list module (section 2.4). Using 

this we state a few problems with this kind of technique in section 2.5. Finally, section 2.6 describes the fourth programming 

technique. 

2.1 Unstructured Programming 

  Usually, people start learning programming by writing small and simple programs consisting only of one main program. Here 
``main program'' stands for a sequence of commands or statements which modify data which is global throughout the whole 
program. We can illustrate this as shown in Fig. 2.1. 
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Figure 2.1: Unstructured 
programming. The main program 
directly operates on global data.

As you should all know, this programming techniques provide tremendous disadvantages once the program gets sufficiently large. 
For example, if the same statement sequence is needed at different locations within the program, the sequence must be copied. This 
has lead to the idea to extract these sequences, name them and offering a technique to call and return from these procedures. 

2.2 Procedural Programming 

  With procedural programming you are able to combine returning sequences of statements into one single place. A procedure call is 
used to invoke the procedure. After the sequence is processed, flow of control proceeds right after the position where the call was 
made (Fig. 2.2). 

  
Figure 2.2: Execution of 

procedures. After processing flow 
of controls proceed where the call 

was made.

With introducing parameters as well as procedures of procedures ( subprocedures) programs can now be written more structured and 
error free. For example, if a procedure is correct, every time it is used it produces correct results. Consequently, in cases of errors you 
can narrow your search to those places which are not proven to be correct. 

Now a program can be viewed as a sequence of procedure calls . The main program is responsible to pass data to the individual 
calls, the data is processed by the procedures and, once the program has finished, the resulting data is presented. Thus, the flow of 
data can be illustrated as a hierarchical graph, a tree, as shown in Fig. 2.3 for a program with no subprocedures. 

  
Figure 2.3: Procedural programming. The main 

program coordinates calls to procedures and hands over 
appropriate data as parameters.



To sum up: Now we have a single program which is devided into small pieces called procedures. To enable usage of general 
procedures or groups of procedures also in other programs, they must be separately available. For that reason, modular programming 
allows grouping of procedures into modules. 

2.3 Modular Programming 

  With modular programming procedures of a common functionality are grouped together into separate modules. A program 
therefore no longer consists of only one single part. It is now devided into several smaller parts which interact through procedure 
calls and which form the whole program (Fig. 2.4). 

  
Figure 2.4: Modular programming. The main program coordinates calls to 

procedures in separate modules and hands over appropriate data as parameters.

Each module can have its own data. This allows each module to manage an internal state which is modified by calls to procedures of 
this module. However, there is only one state per module and each module exists at most once in the whole program. 

2.4 An Example with Data Structures 

  Programs use data structures to store data. Several data structures exist, for example lists, trees, arrays, sets, bags or queues to name 
a few. Each of these data structures can be characterized by their structure and their access methods. 



2.4.1 Handling Single Lists 

  You all know singly linked lists which use a very simple structure, consisting of elements which are strung together, as shown in 
Fig. 2.5). 

  
Figure 2.5: Structure of a singly linked list.

Singly linked lists just provides access methods to append a new element to their end and to delete the element at the front. Complex 
data structures might use already existing ones. For example a queue can be structured like a singly linked list. However, queues 
provide access methods to put a data element at the end and to get the first data element (first-in first-out (FIFO) behaviour). 

We will now present an example which we use to present some design concepts. Since this example is just used to illustrate these 
concepts and problems it is neither complete nor optimal. Refer to chapter 10 for a complete object-oriented discussion about the 

design of data structures. 

Suppose you want to program a list in a modular programming language such as C or Modula-2. As you believe that lists are a 
common data structure, you decide to implement it in a separate module. Typically, this requires you to write two files: the interface 
definition and the implementation file. Within this chapter we will use a very simple pseudo code which you should understand 
immediately. Let's assume, that comments are enclosed in ``/* ... */''. Our interface definition might then look similar to that below: 

    /* 
     * Interface definition for a module which implements
     * a singly linked list for storing data of any type.
     */
       
    MODULE Singly-Linked-List-1

    BOOL list_initialize();
    BOOL list_append(ANY data);
    BOOL list_delete();
         list_end();

    ANY list_getFirst();
    ANY list_getNext();
    BOOL list_isEmpty();

    END Singly-Linked-List-1

Interface definitions just describe what is available and not how it is made available. You hide the information of the implementation 
in the implementation file. This is a fundamental principle in software engineering, so let's repeat it: You hide information of the 
actual implementation (information hiding). This enables you to change the implementation, for example to use a faster but more 
memory consuming algorithm for storing elements without the need to change other modules of your program: The calls to provided 
procedures remain the same. 

The idea of this interface is as follows: Before using the list one has to call list_initialize() to initialize variables local to the module. 
The following two procedures implement the mentioned access methods append and delete. The append procedure needs a more 
detailed discussion. Function list_append() takes one argument data of arbitrary type. This is necessary since you wish to use your 
list in several different environments, hence, the type of the data elements to be stored in the list is not known beforehand. 

Consequently, you have to use a special type ANY which allows to assign data of any type to it . The third procedure list_end() 
needs to be called when the program terminates to enable the module to clean up its internally used variables. For example you might 



want to release allocated memory. 

With the next two procedures list_getFirst() and list_getNext() a simple mechanism to traverse through the list is offered. Traversing 
can be done using the following loop: 

    ANY data;

    data <- list_getFirst();
    WHILE data IS VALID DO
        doSomething(data);
        data <- list_getNext();
    END

Now you have a list module which allows you to use a list with any type of data elements. But what, if you need more than one list in 
one of your programs? 

2.4.2 Handling Multiple Lists 

  You decide to redesign your list module to be able to manage more than one list. You therefore create a new interface description 
which now includes a definition for a list handle. This handle is used in every provided procedure to uniquely identify the list in 
question. Your interface definition file of your new list module looks like this: 

    /* 
     * A list module for more than one list.
     */

    MODULE Singly-Linked-List-2

    DECLARE TYPE list_handle_t;

    list_handle_t list_create();
                  list_destroy(list_handle_t this);
    BOOL          list_append(list_handle_t this, ANY data);
    ANY           list_getFirst(list_handle_t this);
    ANY           list_getNext(list_handle_t this);
    BOOL          list_isEmpty(list_handle_t this);
    
    END Singly-Linked-List-2;

You use DECLARE TYPE to introduce a new type list_handle_t which represents your list handle. We do not specify, how this 
handle is actually represented or even implemented. You also hide the implementation details of this type in your implementation 
file. Note the difference to the previous version where you just hide functions or procedures, respectively. Now you also hide 
information for an user defined data type called list_handle_t. 

You use list_create() to obtain a handle to a new thus empty list. Every other procedure now contains the special parameter this 
which just identifies the list in question. All procedures now operate on this handle rather than a module global list. 

Now you might say, that you can create list objects. Each such object can be uniquely identified by its handle and only those methods 
are applicable which are defined to operate on this handle. 

2.5 Modular Programming Problems 

  The previous section shows, that you already program with some object-oriented concepts in mind. However, the example implies 
some problems which we will outline now. 

2.5.1 Explicit Creation and Destruction 



In the example every time you want to use a list, you explicitly have to declare a handle and perform a call to list_create() to obtain a 
valid one. After the use of the list you must explicitly call list_destroy() with the handle of the list you want to be destroyed. If you 
want to use a list within a procedure, say, foo() you use the following code frame: 

    PROCEDURE foo() BEGIN
        list_handle_t myList;
        myList <- list_create();

        /* Do something with myList */
        ...

        list_destroy(myList);
    END

Let's compare the list with other data types, for example an integer. Integers are declared within a particular scope (for example 
within a procedure). Once you've defined them, you can use them. Once you leave the scope (for example the procedure where the 
integer was defined) the integer is lost. It is automatically created and destroyed. Some compilers even initialize newly created 
integers to a specific value, typically 0 (zero). 

Where is the difference to list ``objects''? The lifetime of a list is also defined by its scope, hence, it must be created once the scope is 
entered and destroyed once it is left. On creation time a list should be initialized to be empty. Therefore we would like to be able to 
define a list similar to the definition of an integer. A code frame for this would look like this: 

    PROCEDURE foo() BEGIN
        list_handle_t myList; /* List is created and initialized */

        /* Do something with the myList */
        ...
     END /* myList is destroyed */

The advantage is, that now the compiler takes care of calling initialization and termination procedures as appropriate. For example, 
this ensures that the list is correctly deleted, returning resources to the program. 

2.5.2 Decoupled Data and Operations 

Decoupling of data and operations leads usually to a structure based on the operations rather than the data: Modules group common 
operations (such as those list_...() operations) together. You then use these operations by providing explicitly the data to them on 
which they should operate. The resulting module structure is therefore oriented on the operations rather than the actual data. One 
could say that the defined operations specify the data to be used. 

In object-orientation, structure is organized by the data. You choose the data representations which best fit your requirements. 
Consequently, your programs get structured by the data rather than operations. Thus, it is exactly the other way around: Data 
specifies valid operations. Now modules group data representations together. 

2.5.3 Missing Type Safety 

  In our list example we have to use the special type ANY to allow the list to carry any data we like. This implies, that the compiler 
cannot guarantee for type safety. Consider the following example which the compiler cannot check for correctness: 

    PROCEDURE foo() BEGIN
        SomeDataType data1;
        SomeOtherType data2;
        list_handle_t myList;

        myList <- list_create();
        list_append(myList, data1);



        list_append(myList, data2); /* Oops */

        ...

        list_destroy(myList);
    END

It is in your responsibility to ensure that your list is used consistently. A possible solution is to additionally add information about the 
type to each list element. However, this implies more overhead and does not prevent you from knowing what you are doing. 

What we would like to have is a mechanism which allows us to specify on which data type the list should be defined. The overall 
function of the list is always the same, whether we store apples, numbers, cars or even lists. Therefore it would be nice to declare a 
new list with something like: 

    list_handle_t<Apple> list1; /* a list of apples */
    list_handle_t<Car> list2; /* a list of cars */

The corresponding list routines should then automatically return the correct data types. The compiler should be able to check for type 
consistency. 

2.5.4 Strategies and Representation 

The list example implies operations to traverse through the list. Typically a cursor is used for that purpose which points to the 
current element. This implies a traversing strategy which defines the order in which the elements of the data structure are to be 
visited. 

For a simple data structure like the singly linked list one can think of only one traversing strategy. Starting with the leftmost element 
one successively visits the right neighbours until one reaches the last element. However, more complex data structures such as trees 
can be traversed using different strategies. Even worse, sometimes traversing strategies depend on the particular context in which a 
data structure is used. Consequently, it makes sense to separate the actual representation or shape of the data structure from its 
traversing strategy. We will investigate this in more detail in chapter 10. 

What we have shown with the traversing strategy applies to other strategies as well. For example insertion might be done such that 
an order over the elements is achieved or not. 

2.6 Object-Oriented Programming 

  Object-oriented programming solves some of the problems just mentioned. In contrast to the other techniques, we now have a web 
of interacting objects, each house-keeping its own state (Fig. 2.6). 

  
Figure 2.6: Object-oriented programming. Objects of the program interact by 

sending messages to each other.



Consider the multiple lists example again. The problem here with modular programming is, that you must explicitly create and 
destroy your list handles. Then you use the procedures of the module to modify each of your handles. 

In contrast to that, in object-oriented programming we would have as many list objects as needed. Instead of calling a procedure 
which we must provide with the correct list handle, we would directly send a message to the list object in question. Roughly 
speaking, each object implements its own module allowing for example many lists to coexist. 

Each object is responsible to initialize and destroy itself correctly. Consequently, there is no longer the need to explicitly call a 
creation or termination procedure. 

You might ask: So what? Isn't this just a more fancier modular programming technique? You were right, if this would be all about 
object-orientation. Fortunately, it is not. Beginning with the next chapters additional features of object-orientation are introduced 
which makes object-oriented programming to a new programming technique. 

2.7 Exercises 

  

1. 
The list examples include the special type ANY to allow a list to carry data of any type. Suppose you want to write a 
module for a specialized list of integers which provides type checking. All you have is the interface definition of module 
Singly-Linked-List-2. 

(a) 
How does the interface definition for a module Integer-List look like? 

(b) 
Discuss the problems which are introduced with using type ANY for list elements in module Singly-Linked-List-2. 

(c) 
What are possible solutions to these problems? 

2. 
What are the main conceptual differences between object-oriented programming and the other programming techniques? 

3. 



If you are familiar with a modular programming language try to implement module Singly-Linked-List-2. Subsequently, 
implement a list of integers and a list of integer lists with help of this module. 
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Some authors describe object-oriented programming as programming abstract data types and their relationships. Within this section 
we introduce abstract data types as a basic concept for object-orientation and we explore concepts used in the list example of the last 
section in more detail. 

3.1 Handling Problems 

The first thing with which one is confronted when writing programs is the problem. Typically you are confronted with ``real-life'' 
problems and you want to make life easier by providing a program for the problem. However, real-life problems are nebulous and 
the first thing you have to do is to try to understand the problem to separate necessary from unnecessary details: You try to obtain 
your own abstract view, or model, of the problem. This process of modeling is called abstraction and is illustrated in Figure 3.1. 

  
Figure 3.1: Create a model from a problem 

with abstraction.
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The model defines an abstract view to the problem. This implies that the model focusses only on problem related stuff and that you 
try to define properties of the problem. These properties include 

●     the data which are affected and 
●     the operations which are identified 

by the problem. 

As an example consider the administration of employees in an institution. The head of the administration comes to you and ask you 
to create a program which allows to administer the employees. Well, this is not very specific. For example, what employee 
information is needed by the administration? What tasks should be allowed? Employees are real persons who can be characterized 
with many properties; very few are: 

●     name, 
●     size, 
●     date of birth, 
●     shape, 
●     social number, 
●     room number, 
●     hair colour, 
●     hobbies. 

Certainly not all of these properties are necessary to solve the administration problem. Only some of them are problem specific. 
Consequently you create a model of an employee for the problem. This model only implies properties which are needed to fulfill the 
requirements of the administration, for instance name, date of birth and social number. These properties are called the data of the 
(employee) model. Now you have described real persons with help of an abstract employee. 

Of course, the pure description is not enough. There must be some operations defined with which the administration is able to handle 
the abstract employees. For example, there must be an operation which allows you to create a new employee once a new person 
enters the institution. Consequently, you have to identify the operations which should be able to be performed on an abstract 
employee. You also decide to allow access to the employees' data only with associated operations. This allows you to ensure that 
data elements are always in a proper state. For example you are able to check if a provided date is valid. 

To sum up, abstraction is the structuring of a nebulous problem into well-defined entities by defining their data and operations. 
Consequently, these entities combine data and operations. They are not decoupled from each other. 



3.2 Properties of Abstract Data Types 

The example of the previous section shows, that with abstraction you create a well-defined entity which can be properly handled. 
These entities define the data structure of a set of items. For example, each administered employee has a name, date of birth and 
social number. 

The data structure can only be accessed with defined operations. This set of operations is called interface and is exported by the 
entity. An entity with the properties just described is called an abstract data type (ADT). 

Figure 3.2 shows an ADT which consists of an abstract data structure and operations. Only the operations are viewable from the 

outside and define the interface. 

  
Figure 3.2: An abstract data type (ADT).

Once a new employee is ``created'' the data structure is filled with actual values: You now have an instance of an abstract employee. 
You can create as many instances of an abstract employee as needed to describe every real employed person. 

Let's try to put the characteristics of an ADT in a more formal way: 

Definition (Abstract Data Type) An abstract data type (ADT) is characterized by the following properties: 

1. 
It exports a type. 

2. 
It exports a set of operations. This set is called interface. 

3. 
Operations of the interface are the one and only access mechanism to the type's data structure. 

4. 
Axioms and preconditions define the application domain of the type. 

With the first property it is possible to create more than one instance of an ADT as exemplified with the employee example. You 
might also remember the list example of chapter 2. In the first version we have implemented a list as a module and were only able to 

use one list at a time. The second version introduces the ``handle'' as a reference to a ``list object''. From what we have learned now, 
the handle in conjunction with the operations defined in the list module defines an ADT List: 

1. 
When we use the handle we define the corresponding variable to be of type List. 

2. 
The interface to instances of type List is defined by the interface definition file. 

3. 
Since the interface definition file does not include the actual representation of the handle, it cannot be modified directly. 

4. 
The application domain is defined by the semantical meaning of provided operations. Axioms and preconditions include 
statements such as 

❍     ``An empty list is a list.'' 



❍     ``Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in l=(d1, d2, d3, ..., dN, dM).'' 
❍     ``The first element of a list can only be deleted if the list is not empty.'' 

However, all of these properties are only valid due to our understanding of and our discipline in using the list module. It is in our 
responsibility to use instances of List according to these rules. 

Importance of Data Structure Encapsulation 

The principle of hiding the used data structure and to only provide a well-defined interface is known as encapsulation. Why is it so 
important to encapsulate the data structure? 

To answer this question consider the following mathematical example where we want to define an ADT for complex numbers. For 
the following it is enough to know that complex numbers consists of two parts: real part and imaginary part. Both parts are 
represented by real numbers. Complex numbers define several operations: addition, substraction, multiplication or division to name a 
few. Axioms and preconditions are valid as defined by the mathematical definition of complex numbers. For example, it exists a 
neutral element for addition. 

To represent a complex number it is necessary to define the data structure to be used by its ADT. One can think of at least two 
possibilities to do this: 

●     Both parts are stored in a two-valued array where the first value indicates the real part and the second value the imaginary 
part of the complex number. If x denotes the real part and y the imaginary part, you could think of accessing them via array 
subscription: x=c[0] and y=c[1]. 

●     Both parts are stored in a two-valued record. If the element name of the real part is r and that of the imaginary part is i, x 
and y can be obtained with: x=c.r and y=c.i. 

Point 3 of the ADT definition says that for each access to the data structure there must be an operation defined. The above access 
examples seem to contradict this requirement. Is this really true? 

Let's look again at the two possibilities for representing imaginary numbers. Let's stick to the real part. In the first version, x equals c
[0]. In the second version, x equals c.r. In both cases x equals ``something''. It is this ``something'' which differs from the actual data 
structure used. But in both cases the performed operation ``equal'' has the same meaning to declare x to be equal to the real part of 
the complex number c: both cases archieve the same semantics. 

If you think of more complex operations the impact of decoupling data structures from operations becomes even more clear. For 
example the addition of two complex numbers requires you to perform an addition for each part. Consequently, you must access the 
value of each part which is different for each version. By providing an operation ``add'' you can encapsulate these details from its 
actual use. In an application context you simply ``add two complex numbers'' regardless of how this functionality is actually 
archieved. 

Once you have created an ADT for complex numbers, say Complex, you can use it in the same way like well-known data types such 
as integers. 

Let's summarize this: The separation of data structures and operations and the constraint to only access the data structure via a well-
defined interface allows you to choose data structures appropriate for the application environment. 

3.3 Generic Abstract Data Types 

ADTs are used to define a new type from which instances can be created. As shown in the list example, sometimes these instances 
should operate on other data types as well. For instance, one can think of lists of apples, cars or even lists. The semantical definition 
of a list is always the same. Only the type of the data elements change according to what type the list should operate on. 

This additional information could be specified by a generic parameter which is specified at instance creation time. Thus an instance 
of a generic ADT is actually an instance of a particular variant of the ADT. A list of apples can therefore be declared as follows: 



    List<Apple> listOfApples;

The angle brackets now enclose the data type for which a variant of the generic ADT List should be created. listOfApples offers the 
same interface as any other list, but operates on instances of type Apple. 

3.4 Notation 

As ADTs provide an abstract view to describe properties of sets of entities, their use is independent from a particular programming 
language. We therefore introduce a notation here which is adopted from [3]. Each ADT description consists of two parts: 

●     Data: This part describes the structure of the data used in the ADT in an informal way. 
●     Operations: This part describes valid operations for this ADT, hence, it describes its interface. We use the special 

operation constructor to describe the actions which are to be performed once an entity of this ADT is created and 
destructor to describe the actions which are to be performed once an entity is destroyed. For each operation the provided 
arguments as well as preconditions and postconditions are given. 

As an example the description of the ADT Integer is presented. Let k be an integer expression: 

ADT Integer is 
Data 

A sequence of digits optionally prefixed by a plus or minus sign. We refer to this signed whole number as N. 

Operations 
constructor 

Creates a new integer. 
add(k) 

Creates a new integer which is the sum of N and k. 

Consequently, the postcondition of this operation is sum = N+k. Don't confuse this with assign 
statements as used in programming languages! It is rather a mathematical equation which yields ``true'' 
for each value sum, N and k after add has been performed. 

sub(k) 
Similar to add, this operation creates a new integer of the difference of both integer values. Therefore 
the postcondition for this operation is sum = N-k. 

set(k) 
Set N to k. The postcondition for this operation is N = k. 

... 
end 

The description above is a specification for the ADT Integer. Please notice, that we use words for names of operations such as 
``add''. We could use the more intuitive ``+'' sign instead, but this may lead to some confusion: You must distinguish the operation ``
+'' from the mathematical use of ``+'' in the postcondition. The name of the operation is just syntax whereas the semantics is 
described by the associated pre- and postconditions. However, it is always a good idea to combine both to make reading of ADT 
specifications easier. 

Real programming languages are free to choose an arbitrary implementation for an ADT. For example, they might implement the 
operation add with the infix operator ``+'' leading to a more intuitive look for addition of integers. 

3.5 Abstract Data Types and Object-Orientation 



ADTs allows the creation of instances with well-defined properties and behaviour. In object-orientation ADTs are referred to as 
classes. Therefore a class defines properties of objects which are the instances in an object-oriented environment. 

ADTs define functionality by putting main emphasis on the involved data, their structure, operations as well as axioms and 
preconditions. Consequently, object-oriented programming is ``programming with ADTs'': combining functionality of different 
ADTs to solve a problem. Therefore instances (objects) of ADTs (classes) are dynamically created, destroyed and used. 

3.6 Excercises 

  

1. 
ADT Integer. 
(a) 

Why are there no preconditions for operations add and sub? 
(b) 

Obviously, the ADT description of Integer is incomplete. Add methods mul, div and any other one. Describe 
their impacts by specifying pre- and postconditions. 

2. 
Design an ADT Fraction which describes properties of fractions. 
(a) 

What data structures can be used? What are its elements? 
(b) 

What does the interface look like? 
(c) 

Name a few axioms and preconditions. 
3. 

Describe in your own words properties of abstract data types. 
4. 

Why is it necessary to include axioms and preconditions to the definition of an abstract data type? 
5. 

Describe in your own words the relationship between 
❍     instance and abstract data type, 
❍     generic abstract data type and corresponding abstract data type, 
❍     instances of a generic abstract data type. 
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The previous sections already introduce some ``object-oriented'' concepts. However, they were applied in an procedural environment 
or in a verbal manner. In this section we investigate these concepts in more detail and give them names as used in existing object-
oriented programming languages. 

4.1 Implementation of Abstract Data Types 

The last section introduces abstract data types (ADTs) as an abstract view to define properties of a set of entities. Object-oriented 
programming languages must allow to implement these types. Consequently, once an ADT is implemented we have a particular 
representation of it available. 

Consider again the ADT Integer. Programming languages such as Pascal, C, Modula-2 and others already offer an implementation 
for it. Sometimes it is called int or integer. Once you've created a variable of this type you can use its provided operations. For 
example, you can add two integers: 

  int i, j, k;    /* Define three integers */

  i = 1;          /* Assign 1 to integer i */
  j = 2;          /* Assign 2 to integer j */
  k = i + j;      /* Assign the sum of i and j to k */

Let's play with the above code fragment and outline the relationship to the ADT Integer. The first line defines three instances i, j and 
k of type Integer. Consequently, for each instance the special operation constructor should be called. In our example, this is 
internally done by the compiler. The compiler reserves memory to hold the value of an integer and ``binds'' the corresponding name 
to it. If you refer to i you actually refer to this memory area which was ``constructed'' by the definition of i. Optionally, compilers 
might choose to initialize the memory, for example, they might set it to 0 (zero). 

The next line 

  i = 1;

sets the value of i to be 1. Therefore we can describe this line with help of the ADT notation as follows: 
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Perform operation set with argument 1 on the Integer instance i. This is written as follows: i.set(1). 

We now have a representation at two levels. The first level is the ADT level where we express everything that is done to an instance 
of this ADT by the invocation of defined operations. At this level, pre- and postconditions are used to describe what actually 
happens. In the following example, these conditions are enclosed in curly brackets. 

{ Precondition: i = n where n is any Integer } 
i.set(1) 
{ Postcondition: i = 1 } 
Don't forget that we currently talk about the ADT level! Consequently, the conditions are mathematical conditions. 

The second level is the implementation level, where an actual representation is chosen for the operation. In C the equal sign ``='' 
implements the set() operation. However, in Pascal the following representation was chosen: 

  i := 1;

In either case, the ADT operation set is implemented. 

Let's stress these levels a little bit further and have a look at the line 

  k = i + j;

Obviously, ``+'' was chosen to implement the add operation. We could read the part ``i + j'' as ``add the value of j to the value of i'', 
thus at the ADT level this results in 

{ Precondition: Let i = n1 and j = n2 with n1, n2 particular Integers } 
i.add(j) 
{ Postcondition: i = n1 and j = n2 } 
The postcondition ensures that i and j do not change their values. Please recall the specification of add. It says that a new Integer is 
created the value of which is the sum. Consequently, we must provide a mechanism to access this new instance. We do this with the 
set operation applied on instance k: 

{ Precondition: Let k = n where n is any Integer } 
k.set(i.add(j)) 
{ Postcondition: k = i + j } 
As you can see, some programming languages choose a representation which almost equals the mathematical formulation used in the 
pre- and postconditions. This makes it sometimes difficult to not mix up both levels. 

4.2 Class 

  A class is an actual representation of an ADT. It therefore provides implementation details for the data structure used and 
operations. We play with the ADT Integer and design our own class for it: 

  class Integer {
  attributes:
    int i

  methods:
    setValue(int n)
    Integer addValue(Integer j)
  }

In the example above as well as in examples which follow we use a notation which is not programming language specific. In this 



notation class {...} denotes the definition of a class. Enclosed in the curly brackets are two sections attributes: and 
methods: which define the implementation of the data structure and operations of the corresponding ADT. Again we distinguish 
the two levels with different terms: At the implementation level we speak of ``attributes'' which are elements of the data structure at 
the ADT level. The same applies to ``methods'' which are the implementation of the ADT operations. 

In our example, the data structure consists of only one element: a signed sequence of digits. The corresponding attribute is an 

ordinary integer of a programming language . We only define two methods setValue() and addValue() representing the two 
operations set and add. 

Definition (Class) A class is the implementation of an abstract data type (ADT). It defines attributes and methods which implement 
the data structure and operations of the ADT, respectively. Instances of classes are called objects. Consequently, classes define 
properties and behaviour of sets of objects. 

4.3 Object 

  Recall the employee example of chapter 3. We have talked of instances of abstract employees. These instances are actual 

``examples'' of an abstract employee, hence, they contain actual values to represent a particular employee. We call these instances 
objects. 

Objects are uniquely identifiable by a name. Therefore you could have two distinguishable objects with the same set of values. This 
is similar to ``traditional'' programming languages where you could have, say two integers i and j both of which equal to ``2''. Please 
notice the use of ``i'' and ``j'' in the last sentence to name the two integers. We refer to the set of values at a particular time as the 
state of the object. 

Definition (Object) An object is an instance of a class. It can be uniquely identified by its name and it defines a state which is 
represented by the values of its attributes at a particular time. 

The state of the object changes according to the methods which are applied to it. We refer to these possible sequence of state changes 
as the behaviour of the object: 

Definition (Behaviour) The behaviour of an object is defined by the set of methods which can be applied on it. 

We now have two main concepts of object-orientation introduced, class and object. Object-oriented programming is therefore the 
implementation of abstract data types or, in more simple words, the writing of classes. At runtime instances of these classes, the 
objects, achieve the goal of the program by changing their states. Consequently, you can think of your running program as a 
collection of objects. The question arises of how these objects interact? We therefore introduce the concept of a message in the next 
section. 

4.4 Message 

  A running program is a pool of objects where objects are created, destroyed and interacting. This interacting is based on messages 
which are sent from one object to another asking the recipient to apply a method on itself. To give you an understanding of this 
communication, let's come back to the class Integer presented in section 4.2. In our pseudo programming language we could create 

new objects and invoke methods on them. For example, we could use 

  Integer i;     /* Define a new integer object */
  i.setValue(1); /* Set its value to 1 */

to express the fact, that the integer object i should set its value to 1. This is the message ``Apply method setValue with argument 1 on 
yourself.'' sent to object i. We notate the sending of a message with ``.''. This notation is also used in C++; other object-oriented 

languages might use other notations, for example ``- ''. 

Sending a message asking an object to apply a method is similar to a procedure call in ``traditional'' programming languages. 



However, in object-orientation there is a view of autonomous objects which communicate with each other by exchanging messages. 
Objects react when they receive messages by applying methods on themselves. They also may deny the execution of a method, for 
example if the calling object is not allowed to execute the requested method. 

In our example, the message and the method which should be applied once the message is received have the same name: We send 
``setValue with argument 1'' to object i which applies ``setValue(1)''. 

Definition (Message) A message is a request to an object to invoke one of its methods. A message therefore contains 

●     the name of the method and 
●     the arguments of the method. 

Consequently, invocation of a method is just a reaction caused by receipt of a message. This is only possible, if the method is 
actually known to the object. 

Definition (Method) A method is associated with a class. An object invokes a method as a reaction to receipt of a message. 

4.5 Summary 

To view a program as a collection of interacting objects is a fundamental principle in object-oriented programming. Objects in this 
collection react upon receipt of messages, changing their state according to invocation of methods which might cause other messages 
sent to other objects. This is illustrated in Figure 4.1. 

  
Figure 4.1: A program consisting of four objects.

In this figure, the program consists of only four objects. These objects send messages to each other, as indicated by the arrowed lines. 
Note that the third object sends itself a message. 

How does this view help us developing software? To answer this question let's recall how we have developed software for procedural 
programming languages. The first step was to divide the problem into smaller manageable pieces. Typically these pieces were 
oriented to the procedures which were taken place to solve the problem, rather than the involved data. 



As an example consider your computer. Especially, how a character appears on the screen when you type a key. In a procedural 
environment you write down the several steps necessary to bring a character on the screen: 

1. 
wait, until a key is pressed. 

2. 
get key value 

3. 
write key value at current cursor position 

4. 
advance cursor position 

You do not distinguish entities with well-defined properties and well-known behaviour. In an object-oriented environment you 
would distinguish the interacting objects key and screen. Once a key receive a message that it should change its state to be pressed, 
its corresponding object sends a message to the screen object. This message requests the screen object to display the associated key 
value. 

4.6 Exercises 

1. 
Class. 
(a) 

What distinguishes a class from an ADT? 
(b) 

Design a class for the ADT Complex. What representations do you choose for the ADT operations? Why? 
2. 

Interacting objects. Have a look to your tasks of your day life. Choose one which does not involve too many steps (for 
example, watching TV, cooking a meal, etc.). Describe this task in procedural and object-oriented form. Try to begin 
viewing the world to consist of objects. 

3. 
Object view. Regarding the last exercise, what problems do you encounter? 

4. 
Messages. 
(a) 

Why do we talk about ``messages'' rather than ``procedure calls''? 
(b) 

Name a few messages which make sense in the Internet environment. (You must therefore identify objects.) 
(c) 

Why makes the term ``message'' more sense in the environment of the last exercise, than the term ``procedure 
call''? 
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Whereas the previous lecture introduces the fundamental concepts of object-oriented programming, this lecture presents more details 

about the object-oriented idea. This section is mainly adopted from [2] . 

5.1 Relationships 

In exercise 3.6.5 you already investigate relationships between abstract data types and instances and describe them in your own 

words. Let's go in more detail here. 

A-Kind-Of relationship 

Consider you have to write a drawing program. This program would allow drawing of various objects such as points, circles, 
rectangles, triangles and many more. For each object you provide a class definition. For example, the point class just defines a point 
by its coordinates: 

  class Point {
  attributes:
    int x, y

  methods:
    setX(int newX)
    getX()
    setY(int newY)
    getY()
  }

You continue defining classes of your drawing program with a class to describe circles. A circle defines a center point and a radius: 
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  class Circle {
  attributes:
    int x, y,
        radius

  methods:
    setX(int newX)
    getX()
    setY(int newY)
    getY()
    setRadius(newRadius)
    getRadius()
  }

Comparing both class definitions we can observe the following: 

●     Both classes have two data elements x and y. In the class Point these elements describe the position of the point, in the case 
of class Circle they describe the circle's center. Thus, x and y have the same meaning in both classes: They describe the 
position of their associated object by defining a point. 

●     Both classes offer the same set of methods to get and set the value of the two data elements x and y. 
●     Class Circle ``adds'' a new data element radius and corresponding access methods. 

Knowing the properties of class Point we can describe a circle as a point plus a radius and methods to access it. Thus, a circle is ``a-
kind-of'' point. However, a circle is somewhat more ``specialized''. We illustrate this graphically as shown in Figure 5.1. 

  
Figure 5.1: Illustration of ``a-kind-of'' relationship.

In this and the following figures, classes are drawn using rectangles. Their name always starts with an uppercase letter. The arrowed 
line indicates the direction of the relation, hence, it is to be read as ``Circle is a-kind-of Point.'' 

Is-A relationship 

The previous relationship is used at the class level to describe relationships between two similar classes. If we create objects of two 
such classes we refer to their relationship as an ``is-a'' relationship. 

Since the class Circle is a kind of class Point, an instance of Circle, say acircle, is a point . Consequently, each circle behaves 
like a point. For example, you can move points in x direction by altering the value of x. Similarly, you move circles in this direction 
by altering their x value. 

Figure 5.2 illustrates this relationship. In this and the following figures, objects are drawn using rectangles with round corners. Their 

name only consists of lowercase letters. 

  
Figure 5.2: Illustration of ``is-a'' relationship.



Part-Of relationship 

You sometimes need to be able to build objects by combining them out of others. You already know this from procedural 
programming, where you have the structure or record construct to put data of various types together. 

Let's come back to our drawing program. You already have created several classes for the available figures. Now you decide that you 
want to have a special figure which represents your own logo which consists of a circle and a triangle. (Let's assume, that you 
already have defined a class Triangle.) Thus, your logo consists of two parts or the circle and triangle are part-of your logo: 

  class Logo {
  attributes:
    Circle circle
    Triangle triangle

  methods:
    set(Point where)
  }

We illustrate this in Figure 5.3. 

  
Figure 5.3: Illustration of ``part-of'' relationship.

Has-A relationship 

This relationship is just the inverse version of the part-of relationship. Therefore we can easily add this relationship to the part-of 
illustration by adding arrows in the other direction (Figure 5.4). 

  
Figure 5.4: Illustration of ``has-a'' relationship.

5.2 Inheritance 

With inheritance we are able to make use of the a-kind-of and is-a relationship. As described there, classes which are a-kind-of 
another class share properties of the latter. In our point and circle example, we can define a circle which inherits from point: 

  class Circle inherits from Point {
  attributes:
    int radius

  methods:



    setRadius(int newRadius)
    getRadius()
  }

Class Circle inherits all data elements and methods from point. There is no need to define them twice: We just use already existing 
and well-known data and method definitions. 

On the object level we are now able to use a circle just as we would use a point, because a circle is-a point. For example, we can 
define a circle object and set its center point coordinates: 

  Circle acircle
  acircle.setX(1)        /* Inherited from Point */
  acircle.setY(2)
  acircle.setRadius(3)   /* Added by Circle */

``Is-a'' also implies, that we can use a circle everywhere where a point is expected. For example, you can write a function or method, 
say move(), which should move a point in x direction: 

  move(Point apoint, int deltax) {
    apoint.setX(apoint.getX() + deltax)
  }

As a circle inherits from a point, you can use this function with a circle argument to move its center point and, hence, the whole 
circle: 

  Circle acircle
    ...
  move(acircle, 10)   /* Move circle by moving */
                      /* its center point */

Let's try to formalize the term ``inheritance'': 

Definition (Inheritance) Inheritance is the mechanism which allows a class A to inherit properties of a class B. We say ``A inherits 
from B''. Objects of class A thus have access to attributes and methods of class B without the need to redefine them. The following 
definition defines two terms with which we are able to refer to participating classes when they use inheritance. 

Definition (Superclass/Subclass) If class A inherits from class B, then B is called superclass of A. A is called subclass of B. Objects 
of a subclass can be used where objects of the corresponding superclass are expected. This is due to the fact that objects of the 
subclass share the same behaviour as objects of the superclass. 

In the literature you may also find other terms for ``superclass'' and ``subclass''. Superclasses are also called parent classes. 
Subclasses may also be called child classes or just derived classes. 

Of course, you can again inherit from a subclass, making this class the superclass of the new subclass. This leads to a hierarchy of 
superclass/subclass relationships. If you draw this hierarchy you get an inheritance graph. 

A common drawing scheme is to use arrowed lines to indicate the inheritance relationship between two classes or objects. In our 
examples we have used ``inherits-from''. Consequently, the arrowed line starts from the subclass towards the superclass as illustrated 
in Figure 5.5. 

  
Figure 5.5: A simple 

inheritance graph.



In the literature you also find illustrations where the arrowed lines are used just the other way around. The direction in which the 
arrowed line is used, depends on how the corresponding author has decided to understand it. 

Anyway, within this tutorial, the arrowed line is always directed towards the superclass. 

In the following sections an unmarked arrowed line indicates ``inherit-from''. 

5.3 Multiple Inheritance 

One important object-oriented mechanism is multiple inheritance. Multiple inheritance does not mean that multiple subclasses share 
the same superclass. It also does not mean that a subclass can inherit from a class which itself is a subclass of another class. 

Multiple inheritance means that one subclass can have more than one superclass. This enables the subclass to inherit properties of 
more than one superclass and to ``merge'' their properties. 

As an example consider again our drawing program. Suppose we already have a class String which allows convenient handling of 
text. For example, it might have a method to append other text. In our program we would like to use this class to add text to the 
possible drawing objects. It would be nice to also use already existing routines such as move() to move the text around. 
Consequently, it makes sense to let a drawable text have a point which defines its location within the drawing area. Therefore we 
derive a new class DrawableString which inherits properties from Point and String as illustrated in Figure 5.6. 

  
Figure 5.6: Derive a drawable string which 

inherits properties of Pointand String.

In our pseudo language we write this by simply separating the multiple superclasses by comma: 

  class DrawableString inherits from Point, String {
  attributes:



              /* All inherited from superclasses */

  methods:
              /* All inherited from superclasses */
  }

We can use objects of class DrawableString like both points and strings. Because a drawablestring is-a point we can move them 
around 

  DrawableString dstring
  ...
  move(dstring, 10)
  ...

Since it is a string, we can append other text to them: 

  dstring.append("The red brown fox ...")

Now it's time for the definition of multiple inheritance: 

Definition (Multiple Inheritance) If class A inherits from more than one class, ie. A inherits from B1, B2, ..., Bn, we speak of 
multiple inheritance. This may introduce naming conflicts in A if at least two of its superclasses define properties with the same 
name. 

The above definition introduce naming conflicts which occur if more than one superclass of a subclass use the same name for either 
attributes or methods. For an example, let's assume, that class String defines a method setX() which sets the string to a sequence of 

``X'' characters . The question arises, what should be inherited by DrawableString? The Point, String version or none of them? 

These conflicts can be solved in at least two ways: 

●     The order in which the superclasses are provided define which property will be accessible by the conflict causing name. 
Others will be ``hidden''. 

●     The subclass must resolve the conflict by providing a property with the name and by defining how to use the ones from its 
superclasses. 

The first solution is not very convenient as it introduces implicit consequences depending on the order in which classes inherit from 
each other. For the second case, subclasses must explicitly redefine properties which are involved in a naming conflict. 

A special type of naming conflict is introduced if a class D multiply inherits from superclasses B and C which themselves are derived 
from one superclass A. This leads to an inheritance graph as shown in Figure 5.7. 

  
Figure 5.7: A name conflict introduced by a 
shared superclass of superclasses used with 

multiple inheritance.



The question arises what properties class D actually inherits from its superclasses B and C. Some existing programming languages 
solve this special inheritance graph by deriving D with 

●     the properties of A plus 
●     the properties of B and C without the properties they have inherited from A. 

Consequently, D cannot introduce naming conflicts with names of class A. However, if B and C add properties with the same name, 
D runs into a naming conflict. 

Another possible solution is, that D inherits from both inheritance paths. In this solution, D owns two copies of the properties of A: 
one is inherited by B and one by C. 

Although multiple inheritance is a powerful object-oriented mechanism the problems introduced with naming conflicts have lead 
several authors to ``doom'' it. As the result of multiple inheritance can always be achieved by using (simple) inheritance some object-
oriented languages even don't allow its use. However, carefully used, under some conditions multiple inheritance provides an 
efficient and elegant way of formulating things. 

5.4 Abstract Classes 

With inheritance we are able to force a subclass to offer the same properties like their superclasses. Consequently, objects of a 
subclass behave like objects of their superclasses. 

Sometimes it make sense to only describe the properties of a set of objects without knowing the actual behaviour beforehand. In our 
drawing program example, each object should provide a method to draw itself on the drawing area. However, the necessary steps to 
draw an objects depends on its represented shape. For example, the drawing routine of a circle is different from the drawing routine 
of a rectangle. 

Let's call the drawing method print(). To force every drawable object to include such method, we define a class DrawableObject 
from which every other class in our example inherits general properties of drawable objects: 

  abstract class DrawableObject {
  attributes:



  methods:
    print()
  }

We introduce the new keyword abstract here. It is used to express the fact that derived classes must ``redefine'' the properties to 
fulfill the desired functionality. Thus from the abstract class' point of view, the properties are only specified but not fully defined. 
The full definition including the semantics of the properties must be provided by derived classes. 

Now, every class in our drawing program example inherits properties from the general drawable object class. Therefore, class Point 
changes to: 

  class Point inherits from DrawableObject {
  attributes:
    int x, y

  methods:
    setX(int newX)
    getX()
    setY(int newY)
    getY()
    print()    /* Redefine for Point */
  }

We are now able to force every drawable object to have a method called print which should provide functionality to draw the object 
within the drawing area. The superclass of all drawable objects, class DrawableObject, does not provide any functionality for 
drawing itself. It is not intended to create objects from it. This class rather specifies properties which must be defined by every 
derived class. We refer to this special type of classes as abstract classes: 

Definition (Abstract Class) A class A is called abstract class if it is only used as a superclass for other classes. Class A only 
specifies properties. It is not used to create objects. Derived classes must define the properties of A. 

Abstract classes allow us to structure our inheritance graph. However, we actually don't want to create objects from them: we only 
want to express common characteristics of a set of classes. 

5.5 Exercises 

1. 
Inheritance. Consider the drawing program example again. 
(a) 

Define class Rectangle by inheriting from class Point. The point should indicate the upper left corner of the 
rectangle. What are your class attributes? What additional methods do you introduce? 

(b) 
All current examples are based on a two-dimensional view. You now want to introduce 3D objects such as 
spheres, cubes or cuboids. Design a class Sphere by using a class 3D-Point. Specify the role of the point in a 
sphere. What relationship do you use between class Point and 3D-Point? 

(c) 
What functionality does move() provide for 3D objects? Be as precise as you can. 

(d) 
Draw the inheritance graph including the following classes DrawableObject, Point, Circle, Rectangle, 3D-Point 
and Sphere. 

(e) 
Have a look at the inheritance graph of Figure 5.8. 



  
Figure 

5.8: Alternative 
inheritance graph 
for class Sphere.

A corresponding definition might look like this: 

  class Sphere inherits from Circle {
  attributes:
    int z        /* Add third dimension */

  methods:
    setZ(int newZ)
    getZ()
  }

Give reasons for advantages/disadvantages of this alternative. 

2. 
Multiple inheritance. Compare the inheritance graph shown in Figure 5.9 with that of Figure 5.7. Here, we illustrate that B 

and C have each their own copy of A. 
  

Figure 5.9: Illustration of the second multiple 
inheritance semantics.



What naming conflicts can occur? Try to define cases by playing with simple example classes. 
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We continue with our tour through the world of object-oriented concepts by presenting a short introduction to static versus dynamic 
binding. With this, we can introduce polymorphism as a mechanism which let objects figure out what to do at runtime. But first, here 
is a brief overview about generic types. 

6.1 Generic Types 

We already know generic types from chapter 3 when we have talked about generic abstract data types. When defining a class, we 

actually define a user defined type. Some of these types can operate on other types. For example, there could be lists of apples, list of 
cars, lists of complex numbers of even lists of lists. 

At the time, when we write down a class definition, we must be able to say that this class should define a generic type. However, we 
don't know with which types the class will be used. Consequently, we must be able to define the class with help of a ``placeholder'' to 
which we refer as if it is the type on which the class operates. Thus, the class definition provides us with a template of an actual 
class. The actual class definition is created once we declare a particular object. Let's illustrate this with the following example. 
Suppose, you want to define a list class which should be a generic type. Thus, it should be possible to declare list objects for apples, 
cars or any other type. 

  template class List for T {
    attributes:
      ...       /* Data structure needed to implement */
                /* the list */

    methods:
      append(T element)
      T getFirst()
      T getNext()
      bool more()
  }

The above template class List looks like any other class definition. However, the first line declares List to be a template for various 
types. The identifier T is used as a placeholder for an actual type. For example, append() takes one element as an argument. The type 
of this element will be the data type with which an actual list object is created. For example, we can declare a list object for apples if 
a definition fot the type Apple exists: 

  List for Apple appleList
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  Apple anApple,
        anotherApple
  appleList.append(anotherApple)
  appleList.append(anApple)

The first line declares appleList to be a list for apples. At this time, the compiler uses the template definition, substitutes every 
occurrence of T with Apple and creates an actual class definition for it. This leads to a class definition similar to the one that follows: 

  class List {
    attributes:
      ...       /* Data structure needed to implement */
                /* the list */

    methods:
      append(Apple element)
      Apple getFirst()
      Apple getNext()
      bool more()
  }

This is not exactly, what the compiler generates. The compiler must ensure that we can create multiple lists for different types at any 
time. For example, if we need another list for, say pears, we can write: 

  List for Apple appleList
  List for Pear pearList
  ...

In both cases the compiler generates an actual class definition. The reason why both do not conflict by their name is that the compiler 
generates unique names. However, since this is not viewable to us, we don't go in more detail here. In any case, if you declare just 
another list of apples, the compiler can figure out if there already is an actual class definition and use it or if it has to be created. 
Thus, 

  List for Apple aList
  List for Apple anotherList

will create the actual class definition for aList and will reuse it for anotherList. Consequently, both are of the same type. We 
summarize this in the following definition: 

Definition (Template Class) If a class A is parameterized with a data type B, A is called template class. Once an object of A is 
created, B is replaced by an actual data type. This allows the definition of an actual class based on the template specified for A and 
the actual data type. 

We are able to define template classes with more than one parameter. For example, directories are collections of objects where each 
object can be referenced by a key. Of course, a directory should be able to store any type of object. But there are also various 
possibilities for keys. For instance, they might be strings or numbers. Consequently, we would define a template class Directory 
which is based on two type parameters, one for the key and one for the stored objects. 

6.2 Static and Dynamic Binding 

In strongly typed programming languages you typically have to declare variables prior to their use. This also implies the variable's 
definition where the compiler reserves space for the variable. For example, in Pascal an expression like 

  var i : integer;

declares variable i to be of type integer. Additionally, it defines enough memory space to hold an integer value. 



With the declaration we bind the name i to the type integer. This binding is true within the scope in which i is declared. This enables 
the compiler to check at compilation time for type consistency. For example, the following assignment will result in a type mismatch 
error when you try to compile it: 

  var i : integer;
  ...
  i := 'string';

We call this particular type of binding ``static'' because it is fixed at compile time. 

Definition (Static Binding) If the type T of a variable is explicitly associated with its name N by declaration, we say, that N is 
statically bound to T. The association process is called static binding. 

There exist programming languages which are not using explicitly typed variables. For example, some languages allow to introduce 
variables once they are needed: 

  ...       /* No appearance of i */
  i := 123  /* Creation of i as an integer */

The type of i is known as soon as its value is set. In this case, i is of type integer since we have assigned a whole number to it. Thus, 
because the content of i is a whole number, the type of i is integer. 

Definition (Dynamic Binding) If the type T of a variable with name N is implicitly associated by its content, we say, that N is 
dynamically bound to T. The association process is called dynamic binding. 

Both bindings differ in the time when the type is bound to the variable. Consider the following example which is only possible with 
dynamic binding: 

  if somecondition() == TRUE then
    n := 123
  else
    n := 'abc'
  endif

The type of n after the if statement depends on the evaluation of somecondition(). If it is TRUE, n is of type integer whereas in the 
other case it is of type string. 

6.3 Polymorphism 

  Polymorphism allows an entity (for example, variable, function or object) to take a variety of representations. Therefore we have to 
distinguish different types of polymorphism which will be outlined here. 

The first type is similar to the concept of dynamic binding. Here, the type of a variable depends on its content. Thus, its type depends 
on the content at a specific time: 

  v := 123        /* v is integer */
  ...             /* use v as integer */
  v := 'abc'      /* v "switches" to string */
  ...             /* use v as string */

Definition (Polymorphism (1)) The concept of dynamic binding allows a variable to take different types dependent on the content at 
a particular time. This ability of a variable is called polymorphism. Another type of polymorphism can be defined for functions. For 
example, suppose you want to define a function isNull() which returns TRUE if its argument is 0 (zero) and FALSE otherwise. For 
integer numbers this is easy: 



  boolean isNull(int i) {
    if (i == 0) then
      return TRUE
    else
      return FALSE
    endif
  }

However, if we want to check this for real numbers, we should use another comparison due to the precision problem: 

  boolean isNull(real r) {
    if (r < 0.01 and r > -0.99) then
      return TRUE
    else
      return FALSE
    endif
  }

In both cases we want the function to have the name isNull. In programming languages without polymorphism for functions we 
cannot declare these two functions because the name isNull would be doubly defined. Without polymorphism for functions, doubly 
defined names would be ambiguous. However, if the language would take the parameters of the function into account it would work. 
Thus, functions (or methods) are uniquely identified by: 

●     the name of the function (or method) and 
●     the types of its parameter list. 

Since the parameter list of both isNull functions differ, the compiler is able to figure out the correct function call by using the actual 
types of the arguments: 

  var i : integer
  var r : real

  i = 0
  r = 0.0

  ...

  if (isNull(i)) then ...   /* Use isNull(int) */
  ...
  if (isNull(r)) then ...   /* Use isNull(real) */

Definition (Polymorphism (2)) If a function (or method) is defined by the combination of 

●     its name and 
●     the list of types of its parameters 

we speak of polymorphism. This type of polymorphism allows us to reuse the same name for functions (or methods) as long as the 
parameter list differs. Sometimes this type of polymorphism is called overloading. 

The last type of polymorphism allows an object to choose correct methods. Consider the function move() again, which takes an 
object of class Point as its argument. We have used this function with any object of derived classes, because the is-a relation holds. 

Now consider a function display() which should be used to display drawable objects. The declaration of this function might look like 
this: 

  display(DrawableObject o) {
    ...



    o.print()
    ...
  }

We would like to use this function with objects of classes derived from DrawableObject: 

  Circle acircle
  Point apoint
  Rectangle arectangle

  display(apoint)      /* Should invoke apoint.print() */
  display(acircle)     /* Should invoke acircle.print() */
  display(arectangle)  /* Should invoke arectangle.print() */

The actual method should be defined by the content of the object o of function display(). Since this is somewhat complicated, here is 
a more abstract example: 

  class Base {
  attributes:

  methods:
    virtual foo()
    bar()
  }

  class Derived inherits from Base {
  attributes:

  methods:
    virtual foo()
    bar()
  }

  demo(Base o) {
    o.foo()
    o.bar()
  }

  Base abase
  Derived aderived

  demo(abase)
  demo(aderived)

In this example we define two classes Base and Derived. Each class defines two methods foo() and bar(). The first method is defined 
as virtual. This means that if this method is invoked its definition should be evaluated by the content of the object. 

We then define a function demo() which takes a Base object as its argument. Consequently, we can use this function with objects of 
class Derived as the is-a relation holds. We call this function with a Base object and a Derived object, respectively. 

Suppose, that foo() and bar() are defined to just print out their name and the class in which they are defined. Then the output is as 
follows: 

  foo() of Base called.
  bar() of Base called.
  foo() of Derived called.
  bar() of Base called.

Why is this so? Let's see what happens. The first call to demo() uses a Base object. Thus, the function's argument is ``filled'' with an 



object of class Base. When it is time to invoke method foo() it's actual functionality is chosen based on the current content of the 
corresponding object o. This time, it is a Base object. Consequently, foo() as defined in class Base is called. 

The call to bar() is not subject to this content resolution. It is not marked as virtual. Consequently, bar() is called in the scope of 
class Base. 

The second call to demo() takes a Derived object as its argument. Thus, the argument o is filled with a Derived object. However, o 
itself just represents the Base part of the provided object aderived. 

Now, the call to foo() is evaluated by examining the content of o, hence, it is called within the scope of Derived. On the other hand, 
bar() is still evaluated within the scope of Base. 

Definition (Polymorphism (3)) Objects of superclasses can be filled with objects of their subclasses. Operators and methods of 
subclasses can be defined to be evaluated in two contextes: 

1. 
Based on object type, leading to an evaluation within the scope of the superclass. 

2. 
Based on object content, leading to an evaluation within the scope of the contained subclass. 

The second type is called polymorphism. 
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This section is the first part of the introduction to C++. Here we focus on C from which C++ was adopted. C++ extends the C 
programming language with strong typing, some features and - most importantly - object-oriented concepts. 

7.1 The C Programming Language 

Developed in the late 1970s, C gained an huge success due to the development of UNIX which was almost entirely written in this 
language [4]. In contrast to other high level languages, C was written by programmers for programmers. Thus it allows sometimes, say, 

weird things which in other languages such as Pascal are forbidden due to its bad influence on programming style. Anyway, when used 
with some discipline, C is as good a language as any other. 

The comment in C is enclosed in /* ... */. Comments cannot be nested. 

7.1.1 Data Types 

Table 7.1 describes the built-in data types of C. The specified Size is measured in bytes on a 386 PC running Linux 1.2.13. The 

provided Domain is based on the Size value. You can obtain information about the size of a data type with the sizeof operator. 

  
Table 7.1: Built-in types.
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Variables of these types are defined simply by preceeding the name with the type: 

  int an_int;
  float a_float;
  long long a_very_long_integer;

With struct you can combine several different types together. In other languages this is sometimes called a record: 

  struct date_s {
    int day, month, year;
  } aDate;

The above definition of aDate is also the declaration of a structure called date_s. We can define other variables of this type by 
referencing the structure by name: 

  struct date_s anotherDate;



We do not have to name structures. If we omit the name, we just cannot reuse it. However, if we name a structure, we can just declare 
it without defining a variable: 

  struct time_s {
    int hour, minute, second;
  };

We are able to use this structure as shown for anotherDate. This is very similar to a type definition known in other languages 
where a type is declared prior to the definition of a variable of this type. 

Variables must be defined prior to their use. These definitions must occur before any statement, thus they form the topmost part within 
a statement block. 

7.1.2 Statements 

C defines all usual flow control statements. Statements are terminated by a semicolon ``;''. We can group multiple statements into 
blocks by enclosing them in curly brackets. Within each block, we can define new variables: 

  {
    int i;      /* Define a global i */
    i = 1;      /* Assign i the value 0 */
    {           /* Begin new block */
      int i;    /* Define a local i */
      i = 2;    /* Set its value to 2 */
    }           /* Close block */
    /* Here i is again 1 from the outer block */
  }

Table 7.2 lists all flow control statements: 

  
Table 7.2: Statements.



The for statement is the only statement which really differs from for statements known from other languages. All other statements 
more or less only differ in their syntax. What follows are two blocks which are totally equal in their functionality. One uses the while 
loop while the other the for variant: 

  {
    int ix, sum;
    sum = 0;
    ix = 0;            /* initialization */
    while (ix < 10) {  /* condition */
      sum = sum + 1;
      ix = ix + 1;     /* step */
    }
  }



  {
    int ix, sum;
    sum = 0;
    for (ix = 0; ix < 10; ix = ix + 1)
      sum = sum + 1;
  }

To understand this, you have to know, that an assignment is an expression. 

7.1.3 Expressions and Operators 

In C almost everything is an expression. For example, the assignment statement ``='' returns the value of its righthand operand. As a 
``side effect'' it also sets the value of the lefthand operand. Thus, 

  ix = 12;

sets the value of ix to 12 (assuming that ix has an appropriate type). Now that the assignment is also an expression, we can combine 
several of them; for example: 

  kx = jx = ix = 12;

What happens? The first assignment assigns kx the value of its righthand side. This is the value of the assignment to jx. But this is the 
value of the assignment to ix. The value of this latter is 12 which is returned to jx which is returned to kx. Thus we have expressed 

  ix = 12;
  jx = 12;
  kx = 12;

in one line. 

Truth in C is defined as follows. The value 0 (zero) stands for FALSE. Any other value is TRUE. For example, the standard function 
strcmp() takes two strings as argument and returns -1 if the first is lower than the second, 0 if they are equal and 1 if the first is greater 
than the second one. To compare if two strings str1 and str2 are equal you often see the following if construct: 

  if (!strcmp(str1, str2)) {
    /* str1 equals str2 */
  }
  else {
    /* str1 does not equal str2 */
  }

The exclamation mark indicates the boolean NOT. Thus the expression evaluates to TRUE only if strcmp() returns 0. 

Expressions are combined of both terms and operators. The first could be constansts, variables or expressions. From the latter, C offers 
all operators known from other languages. However, it offers some operators which could be viewed as abbreviations to combinations 
of other operators. Table 7.3 lists available operators. The second column shows their priority where smaller numbers indicate higher 

priority and same numbers, same priority. The last column lists the order of evaluation. 

  
Table 7.3: Operators.



Most of these operators are already known to you. However, some need some more description. First of all notice that the binary 
boolean operators &, ^ and | are of lower priority than the equality operators == and !=. Consequently, if you want to check for bit 
patterns as in 



  if ((pattern & MASK) == MASK) {
    ...
  }

you must enclose the binary operation into parenthesis . 

The increment operators ++ and  can be explained by the following example. If you have the following statement sequence 

  a = a + 1;
  b = a;

you can use the preincrement operator 

  b = ++a;

Similarly, if you have the following order of statements: 

  b = a;
  a = a + 1;

you can use the postincrement operator 

  b = a++;

Thus, the preincrement operator first increments its associated variable and then returns the new value, whereas the postincrement 

operator first returns the value and then increments its variable. The same rules apply to the pre- and postdecrement operator . 

Function calls, nested assignments and the increment/decrement operators cause side effects when they are applied. This may introduce 
compiler dependencies as the evaluation order in some situations is compiler dependent. Consider the following example which 
demonstrates this: 

  a[i] = i++;

The question is, whether the old or new value of i is used as the subscript into the array a depends on the order the compiler uses to 
evaluate the assignment. 

The conditional operator ?: is an abbreviation for a commonly used if statement. For example to assign max the maximum of a and b 
we can use the following if statement: 

  if (a > b) 
    max = a;
  else
    max = b;

These types of if statements can be shorter written as 

  max = (a > b) ? a : b;

The next unusual operator is the operator assignment. We are often using assignments of the following form 

  expr1 = (expr1) op (expr2)



for example 

  i = i * (j + 1);

In these assignments the lefthand value also appears on the right side. Using informal speech we could express this as ``set the value of 
i to the current value of i multiplied by the sum of the value of j and 1''. Using a more natural way, we would rather say ``Multiply i 
with the sum of the value of j and 1''. C allows us to abbreviate these types of assignments to 

  i *= j + 1;

We can do that with almost all binary operators. Note, that the above operator assignment really implements the long form although ``j 
+ 1'' is not in parenthesis. 

The last unusal operator is the comma operator ,. It is best explained by an example: 

  i = 0;
  j = (i += 1, i += 2, i + 3);

This operator takes its arguments and evaluates them from left to right and returns the value of the rightmost expression. Thus, in the 
above example, the operator first evaluates ``i += 1'' which, as a side effect, increments the value of i. Then the next expression 
``i += 2'' is evaluated which adds 2 to i leading to a value of 3. The third expression is evaluated and its value returned as the operator's 
result. Thus, j is assigned 6. 

The comma operator introduces a particular pitfall when using n-dimensional arrays with . A frequent error is to use a 

comma separated list of indices to try to access an element: 

  int matrix[10][5];  // 2-dim matrix
  int i;

  ...
  i = matrix[1,2];    // WON'T WORK!!
  i = matrix[1][2];   // OK

What actually happens in the first case is, that the comma separated list is interpreted as the comma operator. Consequently, the result 
is 2 which leads to an assignment of the address to the third five elements of the matrix! 

Some of you might wonder, what C does with values which are not used. For example in the assignment statements we have seen 
before, 

  ix = 12;
  jx = 12;
  kx = 12;

we have three lines which each return 12. The answer is, that C ignores values which are not used. This leads to some strange things. 
For example, you could write something like this: 

  ix = 1;
  4711;
  jx = 2;

But let's forget about these strange things. Let's come back to something more useful. Let's talk about functions. 

7.1.4 Functions 



As C is a procedural language it allows the definition of functions. Procedures are ``simulated'' by functions returning ``no value''. This 
value is a special type called void. 

Functions are declared similar to variables, but they enclose their arguments in parenthesis (even if there are no arguments, the 
parenthesis must be specified): 

  int sum(int to);  /* Declaration of sum with one argument */
  int bar();        /* Declaration of bar with no arguments */
  void foo(int ix, int jx);
                    /* Declaration of foo with two arguments */

To actually define a function, just add its body: 

  int sum(int to) {
    int ix, ret;
    ret = 0;
    for (ix = 0; ix < to; ix = ix + 1)
      ret = ret + ix;
    return ret;      /* return function's value */
  } /* sum */

C only allows you to pass function arguments by value. Consequently you cannot change the value of one argument in the function. If 
you must pass an argument by reference you must program it on your own. You therefore use pointers. 

7.1.5 Pointers and Arrays 

One of the most common problems in programming in C (and sometimes C++) is the understanding of pointers and arrays. In C (C++) 
both are highly related with some small but essential differences. You declare a pointer by putting an asterisk between the data type 
and the name of the variable or function: 

  char *strp;      /* strp is `pointer to char' */

You access the content of a pointer by dereferencing it using again the asterisk: 

  *strp = 'a';            /* A single character */

As in other languages, you must provide some space for the value to which the pointer points. A pointer to characters can be used to 

point to a sequence of characters: the string. Strings in C are terminated by a special character NUL (0 or as char ' '). Thus, you 

can have strings of any length. Strings are enclosed in double quotes: 

  strp = "hello";

In this case, the compiler automatically adds the terminating NUL character. Now, strp points to a sequence of 6 characters. The first 
character is `h', the second `e' and so forth. We can access these characters by an index in strp: 

  strp[0]     /* h */
  strp[1]     /* e */
  strp[2]     /* l */
  strp[3]     /* l */
  strp[4]     /* o */
  strp[5]     /* \0 */

The first character also equals ``*strp'' which can be written as ``*(strp + 0)''. This leads to something called pointer arithmetic and 
which is one of the powerful features of C. Thus, we have the following equations: 



  *strp == *(strp + 0) == strp[0]
           *(strp + 1) == strp[1]
           *(strp + 2) == strp[2]
           ...

Note that these equations are true for any data type. The addition is not oriented to bytes, it is oriented to the size of the corresponding 
pointer type! 

The strp pointer can be set to other locations. Its destination may vary. In contrast to that, arrays are fix pointers. They point to a 
predefined area of memory which is specified in brackets: 

  char str[6];

You can view str to be a constant pointer pointing to an area of 6 characters. We are not allowed to use it like this: 

  str = "hallo";   /* ERROR */

because this would mean, to change the pointer to point to 'h'. We must copy the string into the provided memory area. We therefore 
use a function called strcpy() which is part of the standard C library. 

  strcpy(str, "hallo"); /* Ok */

Note however, that we can use str in any case where a pointer to a character is expected, because it is a (fixed) pointer. 

7.1.6 A First Program 

Here we introduce the first program which is so often used: a program which prints ``Hello, world!'' to your screen: 

  #include <stdio.h>

  /* Global variables should be here */

  /* Function definitions should be here */

  int
  main() {
    puts("Hello, world!");
    return 0;
  } /* main */

The first line looks something strange. Its explanation requires some information about how C (and C++) programs are handled by the 
compiler. The compilation step is roughly divided into two steps. The first step is called ``preprocessing'' and is used to prepare raw C 
code. In this case this step takes the first line as an argument to include a file called stdio.h into the source. The angle brackets just 
indicate, that the file is to be searched in the standard search path configured for your compiler. The file itself provides some 
declarations and definitions for standard input/output. For example, it declares a function called put(). The preprocessing step also 
deletes the comments. 

In the second step the generated raw C code is compiled to an executable. Each executable must define a function called main(). It is 
this function which is called once the program is started. This function returns an integer which is returned as the program's exit status. 

Function main() can take arguments which represent the command line parameters. We just introduce them here but do not explain 
them any further: 

  #include <stdio.h>

  int



  main(int argc, char *argv[]) {
    int ix;
    for (ix = 0; ix < argc; ix++) 
      printf("My %d. argument is %s\n", ix, argv[ix]);
    return 0;
  } /* main */

The first argument argc just returns the number of arguments given on the command line. The second argument argv is an array of 
strings. (Recall that strings are represented by pointers to characters. Thus, argv is an array of pointers to characters.) 

7.2 What Next? 

This section is far from complete. We only want to give you an expression of what C is. We also want to introduce some basic 
concepts which we will use in the following section. Some concepts of C are improved in C++. For example, C++ introduces the 
concept of references which allow something similar to call by reference in function calls. 

We suggest that you take your local compiler and start writing a few programs (if you are not already familiar with C, of course). One 
problem for beginners often is that existing library functions are unknown. If you have a UNIX system try to use the man command to 
get some descriptions. Especially you might want to try: 

  man gets
  man printf
  man puts
  man scanf
  man strcpy

We also suggest, that you get yourself a good book about C (or to find one of the on-line tutorials). We try to explain everything we 
introduce in the next sections. However, there is nothign wrong with having some reference at hand. 
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This section presents extensions to the C language which were introduced by C++ [6]. It also deals with object-oriented concepts and 

their realization. 

8.1 Basic Extensions 

  The following sections present extensions to already introduced concepts of C. Section 8.2 presents object-oriented extensions. 

C++ adds a new comment which is introduced by two slashes (//) and which lasts until the end of line. You can use both comment styles, 
for example to comment out large blocks of code: 

  /* C comment can include // and can span over
     several lines. */
  // /* This is the C++ style comment */ until end of line

In C you must define variables at the beginning of a block. C++ allows you to define variables and objects at any position in a block. 
Thus, variables and objects should be defined where they are used. 

8.1.1 Data Types 

C++ introduces a new data type called reference. You can think of them as if they were ``aliases'' to ``real'' variables or objects. As an 
alias cannot exist without its corresponding real part, you cannot define single references. The ampersand (&) is used to define a 
reference. For example: 

  int ix;         /* ix is "real" variable */
  int &rx = ix;   /* rx is "alias" for ix */

  ix = 1;         /* also rx == 1 */
  rx = 2;         /* also ix == 2 */

References can be used as function arguments and return values. This allows to pass parameters as reference or to return a ``handle'' to a 
calculated variable or object. 

mailto:pmueller@uu-gna.mit.edu


The table 8.1 is adopted from [1] and provides you with an overview of possible declarations. It is not complete in that it shows not every 

possible combination and some of them have not been introduced here, because we are not going to use them. However, these are the 
ones which you will probably use very often. 

  
Table 8.1: Declaration expressions.

In C and C++ you can use the modifier const to declare particular aspects of a variable (or object) to be constant. The next table 8.2 

lists possible combinations and describe their meaning. Subsequently, some examples are presented which demonstrate the use of 
const. 

  
Table 8.2: Constant declaration expresssions.

Now let's investigate some examples of contant variables and how to use them. Consider the following declarations (again from [1]): 

  int i;                        // just an ordinary integer
  int *ip;                      // uninitialized pointer to 
                                // integer



  int * const cp = &i;          // constant pointer to integer
  const int ci = 7;             // constant integer
  const int *cip;               // pointer to constant integer
  const int * const cicp = &ci; // constant pointer to constant
                                // integer

The following assignments are valid: 

  i = ci;       // assign constant integer to integer
  *cp = ci;     // assign constant integer to variable
                // which is referenced by constant pointer
  cip = &ci;    // change pointer to constant integer
  cip = cicp;   // set pointer to constant integer to
                // reference variable of constant pointer to
                // constant integer

The following assignments are invalid: 

  ci = 8;       // cannot change constant integer value
  *cip = 7;     // cannot change constant integer referenced
                // by pointer
  cp = &ci;     // cannot change value of constant pointer
  ip = cip;     // this would allow to change value of
                // constant integer *cip with *ip

When used with references some peculiarities must be considered. See the following example program: 

  #include <stdio.h>

  int main() {
    const int ci = 1;
    const int &cr = ci;
    int &r = ci;    // create temporary integer for reference
    // cr = 7;      // cannot assign value to constant reference
    r = 3;          // change value of temporary integer
    print("ci == %d, r == %d\n", ci, r);
    return 0;
  }

When compiled with GNU g++, the compiler issues the following warning: 

conversion from `const int' to `int &' discards const 

What actually happens is, that the compiler automatically creates a temporay integer variable with value of ci to which reference r is 
initialized. Consequently, when changing r the value of the temporary integer is changed. This temporary variable lives as long as 
reference r. 

Reference cr is defined as read-only (constant reference). This disables its use on the left side of assignments. You may want to remove 
the comment in front of the particular line to check out the resulting error message of your compiler. 

8.1.2 Functions 

C++ allows function overloading as defined in section 6.3. For example, we can define two different functions max(), one which returns 

the maximum of two integers and one which returns the maximum of two strings: 

  #include <stdio.h>

  int max(int a, int b) {



    if (a > b) return a;
    return b;
  }

  char *max(char *a, char * b) {
    if (strcmp(a, b) > 0) return a;
    return b;
  }

  int main() {
    printf("max(19, 69) = %d\n", max(19, 69));
    printf("max(abc, def) = %s\n", max("abc", "def"));
    return 0;
  }

The above example program defines these two functions which differ in their parameter list, hence, they define two different functions. 
The first printf() call in function main() issues a call to the first version of max(), because it takes two integers as its argument. Similarly, 
the second printf() call leads to a call of the second version of max(). 

References can be used to provide a function with an alias of an actual function call argument. This enables to change the value of the 
function call argument as it is known from other languages with call-by-reference parameters: 

  void foo(int byValue, int &byReference) {
    byValue = 42;
    byReference = 42;
  }

  void bar() {
    int ix, jx;

    ix = jx = 1;
    foo(ix, jx);
    /* ix == 1, jx == 42 */
  }

8.2 First Object-oriented Extensions 

  In this section we present how the object-oriented concepts of section 4 are used in C++. 

8.2.1 Classes and Objects 

C++ allows the declaration and definition of classes. Instances of classes are called objects. Recall the drawing program example of 
section 5 again. There we have developed a class Point. In C++ this would look like this: 

  class Point {
    int _x, _y;       // point coordinates

  public:             // begin interface section
    void setX(const int val);
    void setY(const int val);
    int getX() { return _x; }
    int getY() { return _y; }
  };

  Point apoint;

This declares a class Point and defines an object apoint. You can think of a class definition as a structure definition with functions (or 
``methods''). Additionally, you can specify the access rights in more detail. For example, _x and _y are private, because elements of 
classes are private as default. Consequently, we explicitly must ``switch'' the access rights to declare the following to be public. We do 
that by using the keyword public followed by a colon: Every element following this keyword are now accessible from outside of the 



class. 

We can switch back to private access rights by starting a private section with private:. This is possible as often as needed: 

  class Foo {
    // private as default ...

  public:
    // what follows is public until ...

  private: 
    // ... here, where we switch back to private ...

  public:
    // ... and back to public.
  };

Recall that a structure struct is a combination of various data elements which are accessible from the outside. We are now able to 
express a structure with help of a class, where all elements are declared to be public: 

  class Struct {
  public:       // Structure elements are public by default
    // elements, methods
  };

This is exactly what C++ does with struct. Structures are handled like classes. Whereas elements of classes (defined with class) are 
private by default, elements of structures (defined with struct) are public. However, we can also use private: to switch to a private 
section in structures. 

Let's come back to our class Point. Its interface starts with the public section where we define four methods. Two for each coordinate to 
set and get its value. The set methods are only declared. Their actual functionality is still to be defined. The get methods have a function 
body: They are defined within the class or, in other words, they are inlined methods. 

This type of method definition is useful for small and simple bodies. It also improve performance, because bodies of inlined methods are 
``copied'' into the code wherever a call to such a method takes place. 

On the contrary, calls to the set methods would result in a ``real'' function call. We define these methods outside of the class declaration. 
This makes it necessary, to indicate to which class a method definition belongs to. For example, another class might just define a method 
setX() which is quite different from that of Point. We must be able to define the scope of the definition; we therefore use the scope 
operator ``::'': 

  void Point::setX(const int val) {
    _x = val;
  }

  void Point::setY(const int val) {
    _y = val;
  }

Here we define method setX() (setY()) within the scope of class Point. The object apoint can use these methods to set and get information 
about itself: 

  Point apoint;

  apoint.setX(1);     // Initialization
  apoint.setY(1);

  //
  // x is needed from here, hence, we define it here and
  // initialize it to the x-coordinate of apoint



  //

  int x = apoint.getX();

The question arises about how the methods ``know'' from which object they are invoked. This is done by implicitly passing a pointer to 
the invoking object to the method. We can access this pointer within the methods as this. The definitions of methods setX() and setY() 
make use of class members _x and _y, respectively. If invoked by an object, these members are ``automatically'' mapped to the correct 
object. We could use this to illustrate what actually happens: 

  void Point::setX(const int val) {
    this->_x = val;   // Use this to reference invoking
                      // object
  }

  void Point::setY(const int val) {
    this->_y = val;
  }

Here we explicitly use the pointer this to explicitly dereference the invoking object. Fortunately, the compiler automatically ``inserts'' 
these dereferences for class members, hence, we really can use the first definitions of setX() and setY(). However, it sometimes make 
sense to know that there is a pointer this available which indicates the invoking object. 

Currently, we need to call the set methods to initialize a point object . However, we would like to initialize the point when we define 
it. We therefore use special methods called constructors. 

8.2.2 Constructors 

  Constructors are methods which are used to initialize an object at its definition time. We extend our class Point such that it initializes a 
point to coordinates (0, 0): 

  class Point {
    int _x, _y;

  public:
    Point() {
      _x = _y = 0;
    }

    void setX(const int val);
    void setY(const int val);
    int getX() { return _x; }
    int getY() { return _y; }
  };

Constructors have the same name of the class (thus they are identified to be constructors). They have no return value. As other methods, 
they can take arguments. For example, we may want to initialize a point to other coordinates than (0, 0). We therefore define a second 
constructor taking two integer arguments within the class: 

 
  class Point { 
    int _x, _y; 
     
  public: 
    Point() {
      _x = _y = 0; 
    }  
    Point(const int x, const int y) {
      _x = x;
      _y = y;
    }



     
    void setX(const int val);
    void setY(const int val); 
    int getX() { return _x; } 
    int getY() { return _y; } 
  };

Constructors are implicitly called when we define objects of their classes: 

  Point apoint;           // Point::Point()
  Point bpoint(12, 34);   // Point::Point(const int, const int)

With constructors we are able to initialize our objects at definition time as we have requested it in section 2 for our singly linked list. We 

are now able to define a class List where the constructors take care of correctly initializing its objects. 

If we want to create a point from another point, hence, copying the properties of one object to a newly created one, we sometimes have to 
take care of the copy process. For example, consider the class List which allocates dynamically memory for its elements. If we want to 
create a second list which is a copy of the first, we must allocate memory and copy the individual elements. In our class Point we 
therefore add a third constructor which takes care of correctly copying values from one object to the newly created one: 

  
  class Point {  
    int _x, _y;  
      
  public:  
    Point() { 
      _x = _y = 0;  
    }   
    Point(const int x, const int y) {
      _x = x;
      _y = y; 
    } 
    Point(const Point &from) {
      _x = from._x;
      _y = from._y;
    }
      
    void setX(const int val); 
    void setY(const int val);  
    int getX() { return _x; } 
    int getY() { return _y; }  
  };

The third constructor takes a constant reference to an object of class Point as an argument and assigns _x and _y the corresponding values 
of the provided object. 

This type of constructor is so important that it has its own name: copy constructor. It is highly recommended that you provide for each of 
your classes such a constructor, even if it is as simple as in our example. The copy constructor is called in the following cases: 

  Point apoint;            // Point::Point() 
  Point bpoint(apoint);    // Point::Point(const Point &)
  Point cpoint = apoint;   // Point::Point(const Point &)

With help of constructors we have fulfilled one of our requirements of implementation of abstract data types: Initialization at definition 
time. We still need a mechanism which automatically ``destroys'' an object when it gets invalid (for example, because of leaving its 
scope). Therefore, classes can define destructors. 

8.2.3 Destructors 



  Consider a class List. Elements of the list are dynamically appended and removed. The constructor helps us in creating an initial empty 
list. However, when we leave the scope of the definition of a list object, we must ensure that the allocated memory is released. We 
therefore define a special method called destructor which is called once for each object at its destruction time: 

  void foo() {
    List alist;     // List::List() initializes to 
                    // empty list.
    ...             // add/remove elements
  }                 // Destructor call!

Destruction of objects take place when the object leaves its scope of definition or is explicitly destroyed. The latter happens, when we 
dynamically allocate an object and release it when it is no longer needed. 

Destructors are declared similar to constructors. Thus, they also use the name prefixed by a tilde (~ ) of the defining class: 

  class Point {
    int _x, _y;
 
  public:
    Point() {
      _x = _y = 0;
    }
    Point(const int x, const int y) {
      _x = xval;
      _y = yval;
    }
    Point(const Point &from) {
      _x = from._x;
      _y = from._y;
    }

    ~Point() { /* Nothing to do! */ }
 
    void setX(const int val);
    void setY(const int val);
    int getX() { return _x; }
    int getY() { return _y; }
  };

Destructors take no arguments. It is even invalid to define one, because destructors are implicitly called at destruction time: You have no 
chance to specify actual arguments. 
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This section concludes our introduction to C++. We introduce ``real'' object-oriented concepts and we answer the question, how a C+
+ program is actually written. 

9.1 Inheritance 

  In our pseudo language, we formulate inheritance with ``inherits from''. In C++ these words are replaced by a colon. As an example 
let's design a class for 3D points. Of course we want to reuse our already existing class Point. We start designing our class as 
follows: 

  class Point3D : public Point {
    int _z;
  
  public:
    Point3D() {
      setX(0);
      setY(0);
      _z = 0;
    }
    Point3D(const int x, const int y, const int z) {
      setX(x);
      setY(y);
      _z = z;
    }

    ~Point3D() { /* Nothing to do */ }
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    int getZ() { return _z; }
    void setZ(const int val) { _z = val; }
  };

9.1.1 Types of Inheritance 

  You might notice again the keyword public used in the first line of the class definition (its signature). This is necessary because C
++ distinguishes two types of inheritance: public and private. As a default, classes are privately derived from each other. 
Consequently, we must explicitly tell the compiler to use public inheritance. 

The type of inheritance influences the access rights to elements of the various superclasses. Using public inheritance, everything 
which is declared private in a superclass remains private in the subclass. Similarly, everything which is public remains 
public. When using private inheritance the things are quite different as is shown in table 9.1. 

  
Table 9.1: Access rights and inheritance.

The leftmost column lists possible access rights for elements of classes. It also includes a third type protected. This type is used 
for elements which should be directly usable in subclasses but which should not be accessible from the outside. Thus, one could say 
elements of this type are between private and public elements in that they can be used within the class hierarchy rooted by the 
corresponding class. 

The second and third column show the resulting access right of the elements of a superclass when the subclass is privately and 
publically derived, respectively. 

9.1.2 Construction 

  When we create an instance of class Point3D its constructor is called. Since Point3D is derived from Point the constructor of class 
Point is also called. However, this constructor is called before the body of the constructor of class Point3D is executed. In general, 
prior to the execution of the particular constructor body, constructors of every superclass are called to initialize their part of the 
created object. 

When we create an object with 

  Point3D point(1, 2, 3);

the second constructor of Point3D is invoked. Prior to the execution of the constructor body, the constructor Point() is invoked, to 
initialize the point part of object point. Fortunately, we have defined a constructor which takes no arguments. This constructor 
initializes the 2D coordinates _x and _y to 0 (zero). As Point3D is only derived from Point there are no other constructor calls and 
the body of Point3D(const int, const int, const int) is executed. Here we invoke methods setX() and setY() to explicitly override the 
2D coordinates. Subsequently, the value of the third coordinate _z is set. 

This is very unsatisfactory as we have defined a constructor Point() which takes two arguments to initialize its coordinates to them. 
Thus we must only be able to tell, that instead of using the default constructor Point() the paramterized Point(const int, const int) 
should be used. We can do that by specifying the desired constructors after a single colon just before the body of constructor Point3D



(): 

  class Point3D : public Point {
    ...

  public:
    Point3D() { ... }
    Point3D(
      const int x, 
      const int y, 
      const int z) : Point(x, y) {
        _z = z;
    }
    ...
  };

If we would have more superclasses we simply provide their constructor calls as a comma separated list. We also use this mechanism 
to create contained objects. For example, suppose that class Part only defines a constructor with one argument. Then to correctly 
create an object of class Compound we must invoke Part() with its argument: 

  class Compound {
    Part part;
    ...

  public:
    Compound(const int partParameter) : part(partParameter) {
      ...
    }
    ...
  };

This dynamic initialization can also be used with built-in data types. For example, the constructors of class Point could be written as: 

  Point() : _x(0), _y(0) {}
  Point(const int x, const int y) : _x(x), _y(y) {}

You should use this initialization method as often as possible, because it allows the compiler to create variables and objects correctly 
initialized instead of creating them with a default value and to use an additional assignment (or other mechanism) to set its value. 

9.1.3 Destruction 

  If an object is destroyed, for example by leaving its definition scope, the destructor of the corresponding class is invoked. If this 
class is derived from other classes their destructors are also called, leading to a recursive call chain. 

9.1.4 Multiple Inheritance 

  C++ allows a class to be derived from more than one superclass, as was already briefly mentioned in previous sections. You can 
easily derive from more than one class by specifying the superclasses in a comma separated list: 

  class DrawableString : public Point, public DrawableObject {
    ...

  public:
    DrawableString(...) :
      Point(...),
      DrawableObject(...) {
        ...



    }
    ~DrawableString() { ... }
    ...
  };

We will not use this type of inheritance in the remainder of this tutorial. Therefore we will not go into further detail here. 

9.2 Polymorphism 

  In our pseudo language we are able to declare methods of classes to be virtual, to force their evaluation to be based on object 
content rather than object type. We can also use this in C++: 

  class DrawableObject {
  public:
    virtual void print();
  };

Class DrawableObject defines a method print() which is virtual. We can derive from this class other classes: 

  class Point : public DrawableObject {
    ...
  public:
    ...
    void print() { ... }
  };

Again, print() is a virtual method, because it inherits this property from DrawableObject. The function display() which is able to 
display any kind of drawable object, can then be defined as: 

  void display(const DrawableObject &obj) {
    // prepare anything necessary
    obj.print();
  }

When using virtual methods some compilers complain if the corresponding class destructor is not declared virtual as well. This is 
necessary when using pointers to (virtual) subclasses when it is time to destroy them. As the pointer is declared as superclass 
normally its destructor would be called. If the destructor is virtual, the destructor of the actual referenced object is called (and then, 
recursively, all destructors of its superclasses). Here is an example adopted from [1]: 

  class Colour {
  public:
    virtual ~Colour(); 
  };

  class Red : public Colour {
  public:
    ~Red();      // Virtuality inherited from Colour
  };

  class LightRed : public Red {
  public:
    ~LightRed();
  };

Using these classes, we can define a palette as follows: 



  Colour *palette[3];
  palette[0] = new Red;   // Dynamically create a new Red object
  palette[1] = new LightRed;
  palette[2] = new Colour;

The newly introduced operator new creates a new object of the specified type in dynamic memory and returns a pointer to it. Thus, 
the first new returns a pointer to an allocated object of class Red and assigns it to the first element of array palette. The elements of 
palette are pointers to Colour and, because Red is-a Colour the assignment is valid. 

The contrary operator to new is delete which explicitly destroys an object referenced by the provided pointer. If we apply 
delete to the elements of palette the following destructor calls happen: 

  delete palette[0];
  // Call destructor ~Red() followed by ~Colour()
  delete palette[1];
  // Call ~LightRed(), ~Red() and ~Colour()
  delete palette[2];
  // Call ~Colour()

The various destructor calls only happen, because of the use of virtual destructors. If we would have not declared them virtual, each 
delete would have only called ~ Colour() (because palette[i] is of type pointer to Colour). 

9.3 Abstract Classes 

  Abstract classes are defined just as ordinary classes. However, some of their methods are designated to be necessarily defined by 
subclasses. We just mention their signature including their return type, name and parameters but not a definition. One could say, we 
omit the method body or, in other words, specify ``nothing''. This is expressed by appending ``= 0'' after the method signatures: 

  class DrawableObject {
    ...
  public:
    ...
    virtual void print() = 0;
  };

This class definition would force every derived class from which objects should be created to define a method print(). These method 
declarations are also called pure methods. 

Pure methods must also be declared virtual, because we only want to use objects from derived classes. Classes which define pure 
methods are called abstract classes. 

9.4 Operator Overloading 

  If we recall the abstract data type for complex numbers, Complex, we could create a C++ class as follows: 

  class Complex {
    double _real, 
           _imag;

    public:
      Complex() : _real(0.0), _imag(0.0) {}
      Complex(const double real, const double imag) :
        _real(real), _imag(imag) {}

      Complex add(const Complex op);
      Complex mul(const Complex op);



      ...
    };

We would then be able to use complex numbers and to ``calculate'' with them: 

  Complex a(1.0, 2.0), b(3.5, 1.2), c;

  c = a.add(b);

Here we assign c the sum of a and b. Although absolutely correct, it does not provide a convenient way of expression. What we 
would rather like to use is the well-known ``+'' to express addition of two complex numbers. Fortunately, C++ allows us to overload 
almost all of its operators for newly created types. For example, we could define a ``+'' operator for our class Complex: 

  class Complex {
    ...

  public:
    ...

    Complex operator +(const Complex &op) {
      double real = _real + op._real,
             imag = _imag + op._imag;
      return(Complex(real, imag));
    }

    ...
  };

In this case, we have made operator + a member of class Complex. An expression of the form 

  c = a + b;

is translated into a method call 

  c = a.operator +(b);

Thus, the binary operator + only needs one argument. The first argument is implicitly provided by the invoking object (in this case 
a). 

However, an operator call can also be interpreted as a usual function call, as in 

  c = operator +(a, b);

In this case, the overloaded operator is not a member of a class. It is rather defined outside as a normal overloaded function. For 
example, we could define operator + in this way: 

  class Complex {
    ...

  public:
    ...

    double real() { return _real; }
    double imag() { return _imag; }

    // No need to define operator here!
  };



  Complex operator +(Complex &op1, Complex &op2) {
    double real = op1.real() + op2.real(),
           imag = op1.imag() + op2.imag();
    return(Complex(real, imag));
  }

In this case we must define access methods for the real and imaginary parts because the operator is defined outside of the class's 
scope. However, the operator is so closely related to the class, that it would make sense to allow the operator to access the private 
members. This can be done by declaring it to be a friend of class Complex. 

9.5 Friends 

We can define functions or classes to be friends of a class to allow them direct access to its private data members. For example, in 
the previous section we would like to have the function for operator + to have access to the private data members _real and _imag of 
class Complex. Therefore we declare operator + to be a friend of class Complex: 

  class Complex {
    ...
  
  public:
    ...

    friend Complex operator +(
      const Complex &, 
      const Complex &
    );
  };

  Complex operator +(const Complex &op1, const Complex &op2) {
    double real = op1._real + op2._real,
           imag = op1._imag + op2._imag;
    return(Complex(real, imag));
  }

You should not use friends very often because they break the data hiding principle in its fundamentals. If you have to use friends 
very often it is always a sign that it is time to restructure your inheritance graph. 

9.6 How to Write a Program 

  Until now, we have only presented parts of or very small programs which could easily be handled in one file. However, greater 
projects, say, a calendar program, should be split into manageable pieces, often called modules. Modules are implemented in separate 
files and we will now briefly discuss how modularization is done in C and C++. This discussion is based on UNIX and the GNU C+
+ compiler. If you are using other constellations the following might vary on your side. This is especially important for those who are 
using integrated development environments (IDEs), for example, Borland C++. 

Roughly speaking, modules consist of two file types: interface descriptions and implementation files. To distinguish these types, a 
set of suffixes are used when compiling C and C++ programs. Table 9.2 shows some of them. 

  
Table 9.2: Extensions and file types.



In this tutorial we will use .h for header files, .cc for C++ files and .tpl for template definition files. Even if we are writing 
``only'' C code, it makes sense to use .cc to force the compiler to treat it as C++. This simplifies combination of both, since the 

internal mechanism of how the compiler arrange names in the program differs between both languages . 

9.6.1 Compilation Steps 

  The compilation process takes .cc files, preprocess them (removing comments, add header files)  and translates them into 

object files . Typical suffixes for that file type are .o or .obj. 

After successful compilation the set of object files is processed by a linker. This program combine the files, add necessary libraries

 and creates an executable. Under UNIX this file is called a.out if not other specified. These steps are illustrated in Figure 9.1. 

  
Figure 9.1: Compilation steps.

With modern compilers both steps can be combined. For example, our small example programs can be compiled and linked with the 
GNU C++ compiler as follows (``example.cc'' is just an example name, of course): 



  gcc example.cc

9.6.2 A Note about Style 

  Header files are used to describe the interface of implementation files. Consequently, they are included in each implementation file 
which uses the interface of the particular implementation file. As mentioned in previous sections this inclusion is achieved by a copy 
of the content of the header file at each preprocessor #include statement, leading to a ``huge'' raw C++ file. 

To avoid the inclusion of multiple copies caused by mutual dependencies we use conditional coding. The preprocessor also defines 
conditional statements to check for various aspects of its processing. For example, we can check if a macro is already defined: 

  #ifndef MACRO
  #define MACRO /* define MACRO */
  ...
  #endif

The lines between #ifndef and #endif are only included, if MACRO is not already defined. We can use this mechanism to 
prevent multiple copies: 

  /*
  ** Example for a header file which `checks' if it is
  ** already included. Assume, the name of the header file
  ** is `myheader.h'
  */

  #ifndef __MYHEADER_H
  #define __MYHEADER_H

  /*
  ** Interface declarations go here
  */

  #endif /* __MYHEADER_H */

__MYHEADER_H is a unique name for each header file. You might want to follow the convention of using the name of the file 
prefixed with two underbars. The first time the file is included, __MYHEADER_H is not defined, thus every line is included and 
processed. The first line just defines a macro called __MYHEADER_H. If accidentally the file should be included a second time 
(while processing the same input file), __MYHEADER_H is defined, thus everything leading up to the #endif is skipped. 

9.7 Excercises 

1. 
Polymorphism. Explain why 

          void display(const DrawableObject obj);

does not produce the desired output. 
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10.1 Generic Types (Templates) 

  In C++ generic data types are called class templates  or just templates for short. A class template looks like a normal class 
definition, where some aspects are represented by placeholders. In the forthcoming list example we use this mechanism to generate 
lists for various data types: 

  template <class T>
  class List : ... {
  public:
    ...
    void append(const T data);
    ...
  };

In the first line we introduce the keyword template which starts every template declaration. The arguments of a template are 
enclosed in angle brackets. 

Each argument specifies a placeholder in the following class definition. In our example, we want class List to be defined for various 

data types. One could say, that we want to define a class of lists . In this case the class of lists is defined by the type of objects 
they contain. We use the name T for the placeholder. We now use T at any place where normally the type of the actual objects are 
expected. For example, each list provides a method to append an element to it. We can now define this method as shown above with 
use of T. 

An actual list definition must now specify the type of the list. If we stick to the class expression used before, we have to create a 
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class instance. From this class instance we can then create ``real'' object instances: 

  List<int> integerList;

Here we create a class instance of a List which takes integers as its data elements. We specify the type enclosed in angle brackets. 
The compiler now applies the provided argument ``int'' and automatically generates a class definition where the placeholder T is 
replaced by int, for example, it generates the following method declaration for append(): 

  void append(const int data);

Templates can take more than one argument to provide more placeholders. For example, to declare a dictionary class which provides 
access to its data elements by a key, one can think of the following declaration: 

  template <class K, class T> 
  class Dictionary {
    ...
  public:
    ...
    K getKey(const T from);
    T getData(const K key);
    ...
  };

Here we use two placeholders to be able to use dictionaries for various key and data types. 

Template arguments can also be used to generate parameterized class definitions. For example, a stack might be implemented by an 
array of data elements. The size of the array could be specified dynamically: 

  template <class T, int size>
  class Stack {
    T _store[size];

  public:
    ...
  };

  Stack<int,128> mystack;

In this example, mystack is a stack of integers using an array of 128 elements. However, in the following we will not use 
parameterized classes. 

10.2 Shape and Traversal 

  In the following discussion we distinguish between a data structure's shape and its traversing strategies. The first is the ``look'', 
which already provides plenty information about the building blocks of the data structure. 

A traversing strategy defines the order in which elements of the data structure are to be visited. It makes sense to separate the shape 
from traversing strategies, because some data structures can be traversed using various strategies. 

Traversing of a data structure is implemented using iterators. Iterators guarantee to visit each data item of their associated data 
structure in a well defined order. They must provide at least the following properties: 

1. 
Current element. The iterator visits data elements one at a time. The element which is currently visited is called ``current 
element''. 



2. 
Successor function. The execution of the step to the next data element depends on the traversing strategy implemented by 
the iterator. The ``successor function'' is used to return the element which is next to be visited: It returns the successor of 
the current element. 

3. 
Termination condition. The iterator must provide a mechanism to check whether all elements are visited or not. 

10.3 Properties of Singly Linked Lists 

  When doing something object-oriented, the first question to ask is 

What are the basic building blocks of the item to implement? 

Have a look at Figure 10.1, which shows a list consisting of four rectangles. Each rectangle has a bullet in its middle, the first three 

point to their right neighbour. Since the last rectangle have no right neighbour, there is no pointer. 

  
Figure 10.1: Basic building blocks of a singly linked list.

First let's choose names for these building blocks. Talking of rectangles is not appropriate, because one can think of a figure using 
circles or triangles. 

Within the scope of graphs the name node is used. A node contains a pointer to its successor. Thus, the list in the figure consists of 
nodes, each of which has exactly one pointer associated with it. 

Three types of nodes can be distinguished: 

●     The first node (head), which has no predecessor, 
●     the middle nodes, which have exactly one predecessor and exactly one successor and 
●     the last node (tail), which has no successor. 

Note that the nodes do not carry any content. This is because the bare data structure list consists only of nodes, which are strung 
together. Of course real applications need nodes, carrying some content. But in the sense of object-orientation this is a specialization 
of the nodes. 

From the figure we can see, that a list can only be used with one traversing strategy: forward cursor. Initially, the head will be the 
first current element. The successor function simply follows the pointer of the current node. The termination function checks the 
current element to be the tail. 

Note that it is not possible to go back nor to start in the middle of the list. The latter would contradict the requirement, that each 
element must be visited. 

The next question is, what are the operations offered by a list? A list only defines two well known nodes head and tail. Let's have a 
deeper look to them. 

A new node can be put-in-front of the list such that: 

●     its pointer is set to the current head, 



●     the new node becomes the new head. 

Similarly, a new node can easily be appended to the tail: 

●     the tail pointer is set to the new node, 
●     the new node becomes the new tail. 

The inverse function to put in front is delete-from-front: 

●     the successor node of the head becomes the new head, 
●     the formerly head node is discarded. 

You should be able to figure out why there is no cheap inverse append function. 

Finally, there exist three other cheap primitives, whose meaning is straight forward. Thus, we will not examine them any further. 
However, we present them here for completeness: 

●     get-first: returns the (data of the) head node, 
●     get-last: returns the (data of the) tail node and 
●     is-empty: returns whether the list is empty or not. 

10.4 Shape Implementation 

  

10.4.1 Node Templates 

  The basic building block of a list is the node. Thus, let's first declare a class for it. A node has nothing more than a pointer to 
another node. Let's assume, that this neighbour is always on the right side. 

Have a look at the following declaration of class Node. 

  class Node {
    Node *_right;

  public:
    Node(Node *right = NULL) : _right(right) {}
    Node(const Node &val) : _right(val._right) {}

    const Node *right() const { return _right; }
    Node *&right() { return _right; }

    Node &operator =(const Node &val) {
      _right = val._right;
      return *this;
    }

    const int operator ==(const Node &val) const {
      return _right == val._right;
    }
    const int operator !=(const Node &val) const {
      return !(*this == val);
    }
  };



A look to the first version of method right() contains a const just before the method body. When used in this position, const 
declares the method to be constant regarding the elements of the invoking object. Consequently, you are only allowed to use this 
mechanism in method declarations or definitions, respectively. 

This type of const modifier is also used to check for overloading. Thus, 

  class Foo {
    ...
    int foo() const;
    int foo();
  };

declare two different methods. The former is used in constant contexts whereas the second is used in variable contexts. 

Although template class Node implements a simple node it seems to define plenty of functionality. We do this, because it is good 
practice to offer at least the following functionality for each defined data type: 

●     Copy Constructor. The copy constructor is needed to allow definition of objects which are initialized from already existing 
ones. 

●     operator =. Each object should know how to assign other objects (of the same type) to itself. In our example class, this is 
simply the pointer assignment. 

●     operator ==. Each object should know how to compare itself with another object. 

The unequality operator ``!='' is implemented by using the definition of the equality operator. Recall, that this points to the 
invoking object, thus, 

  Node a, b;
  ...
  if (a != b) ...

would result in a call to operator !=() with this set to the address of a. We dereference this using the standard dereference 
operator ``*''. Now, *this is an object of class Node which is compared to another object using operator ==(). Consequently, the 
definition of operator ==() of class Node is used. Using the standard boolean NOT operator ``!'' we negate the result and obtain the 
truth value of operator !=(). 

The above methods should be available for each class you define. This ensures that you can use your objects as you would use any 
other objects, for example integers. If some of these methods make no sense for whatever reason, you should declare them in a 
private section of the class to explicitly mark them as not for public use. Otherwise the C++ compiler would substitute standard 
operators. 

Obviously, real applications require the nodes to carry data. As mentioned above, this means to specialize the nodes. Data can be of 
any type, hence, we are using the template construct. 

  template <class T>
  class DataNode : public Node {
    T _data;

  public:
    DataNode(const T data, DataNode *right = NULL) :
      Node(right), _data(data) {}
    DataNode(const DataNode &val) :
      Node(val), _data(val._data) {}

    const DataNode *right() const { 
      return((DataNode *) Node::right());
    }
    DataNode *&right() { return((DataNode *&) Node::right()); }



    const T &data() const { return _data; }
    T &data() { return _data; }

    DataNode &operator =(const DataNode &val) {
      Node::operator =(val);
      _data = val._data;
      return *this;
    }

    const int operator ==(const DataNode &val) const {
      return(
        Node::operator ==(val) &&
        _data == val._data);
    }
    const int operator !=(const DataNode &val) const {
      return !(*this == val);
    }
  };

The above template DataNode simply specializes class Node to carry data of any type. It adds functionality to access its data element 
and also offers the same set of standard functionality: Copy Constructor, operator =() and operator ==(). Note, how we reuse 
functionality already defined by class Node. 

10.4.2 List Templates 

  Now we are able to declare the list template. We also use the template mechanism here, because we want the list to carry data of 
arbitrary type. For example, we want to be able to define a list of integers. We start with an abstract class template ListBase which 
functions as the base class of all other lists. For example, doubly linked lists obviously share the same properties like singly linked 
lists. 

  template <class T>
  class ListBase {
  public:
    virtual ~ListBase() {}  // Force destructor to be
                            // virtual
    virtual void flush() = 0;

    virtual void putInFront(const T data) = 0;
    virtual void append(const T data) = 0;
    virtual void delFromFront() = 0;

    virtual const T &getFirst() const = 0;
    virtual T &getFirst() = 0;
    virtual const T &getLast() const = 0;
    virtual T &getLast() = 0;

    virtual const int isEmpty() const = 0;
  };

What we actually do is to describe the interface of every list by specifying the prototypes of required methods. We do that for every 
operation we have identified in section 10.3. Additionally, we also include a method flush() which allows us to delete all elements of 

a list. 

For operations get-first and get-last we have declared two versions. One is for use in a constant context and the other in a variable 
context. 

With this abstract class template we are able to actually define our list class template: 

  template <class T>



  class List : public ListBase<T> {
    DataNode<T> *_head, *_tail;

  public:
    List() : _head(NULL), _tail(NULL) {}
    List(const List &val) : _head(NULL), _tail(NULL) { 
      *this = val; 
    }
    virtual ~List() { flush(); }
    virtual void flush();

    virtual void putInFront(const T data);
    virtual void append(const T data);
    virtual void delFromFront();

    virtual const T &getFirst() const { return _head->data(); }
    virtual T &getFirst() { return _head->data(); } 
    virtual const T &getLast() const { return _tail->data(); }
    virtual T &getLast() { return _tail->data(); }

    virtual const int isEmpty() const { return _head == NULL; }

    List &operator =(const List &val) {
      flush();
      DataNode<T> *walkp = val._head;
      while (walkp) append(walkp->data());
      return *this;
    }

    const int operator ==(const List &val) const {
      if (isEmpty() && val.isEmpty()) return 1;
      DataNode<T> *thisp = _head,
                  *valp = val._head;
      while (thisp && valp) {
        if (thisp->data() != valp->data()) return 0;
        thisp = thisp->right();
        valp = valp->right();
      }
      return 1;
    }
    const int operator !=(const List &val) const {
      return !(*this == val);
    }

    friend class ListIterator<T>;
  };

The constructors initialize the list's elements _head and _tail to NULL which is the NUL pointer in C and C++. You should know 
how to implement the other methods from your programming experience. Here we only present the implementation of method 
putInFront(): 

  template <class T> void
  List<T>::putInFront(const T data) {
    _head = new DataNode<T>(data, _head);
    if (!_tail) _tail = _head;
  } /* putInFront */

If we define methods of a class template outside of its declaration, we must also specify the template keyword. Again we use the 
new operator to create a new data node dynamically. This operator allows initialization of its created object with arguments enclosed 

in parenthesis. In the above example, new creates a new instance of class DataNode T . Consequently, the corresponding 

constructor is called. 



Also notice how we use placeholder T. If we would create a class instance of class template List, say, List int  this would also 

cause creation of a class instance of class template DataNode, viz DataNode int . 

The last line of the class template declaration declares class template ListIterator to be a friend of List. We want to separately define 
the list's iterator. However, it is closely related, thus, we allow it to be a friend. 

10.5 Iterator Implementation 

In section 10.2 we have introduced the concept of iterators to traverse through a data structure. Iterators must implement three 

properties: 

●     Current element. 
●     Successor function. 
●     Termination condition. 

Generally speaking, the iterator successively returns data associated with the current element. Obviously, there will be a method, say, 
current() which implements this functionality. The return type of this method depends on the type of data stored in the particular data 

structure. For example, when iterating over List int  the return type should be int. 

The successor function, say, succ(), uses additional information which is stored in structural elements of the data structure. In our list 
example, these are the nodes which carry the data and a pointer to their right neighbour. The type of the structural elements usually 

differs from that of the raw data. Consider again our List int  where succ() must use DataNode int  as structural elements. 

The termination condition is implemented by a method, say, terminate(), which returns TRUE if (and only if) all data elements of the 
associated data structure have been visited. As long as succ() can find an element not yet visited, this method returns FALSE. 

Again we want to specify an abstract iterator class which defines properties of every iterator. The thoughts above lead to the 
following declaration: 

  template <class Data, class Element>
  class Iterator {
  protected:
    Element _start,
            _current;
    
  public:
    Iterator(const Element start) : 
      _start(start), _current(start) {}
    Iterator(const Iterator &val) :
      _start(val._start), _current(val._current) {}
    virtual ~Iterator() {}

    virtual const Data current() const = 0;
    virtual void succ() = 0;
    virtual const int terminate() const = 0;

    virtual void rewind() { _current = _start; }

    Iterator &operator =(const Iterator &val) {
      _start = val._start;
      _current = val._current;
      return *this;
    }



    const int operator ==(const Iterator &val) const {
      return(_start == val._start && _current == val._current);
    }
    const int operator !=(const Iterator &val) const {
      return !(*this == val);
    }
  };

Again we use the template mechanism to allow the use of the iterator for any data structure which stores data of type Data and which 
uses structural elements of type Element. Each iterator ``knows'' a starting (structural) element and the current element. We make 
both accessible from derived classes because derived iterators need access to them to implement the following iterator properties. 
You should already understand how the constructors operate and why we force the destructor to be virtual. 

Subsequently we specify three methods which should implement the three properties of an iterator. We also add a method rewind() 
which simply sets the current element to the start element. However, complex data structures (for example hash tables) might require 
more sophisticated rewind algorithms. For that reason we also specify this method to be virtual, allowing derived iterators to 
redefine it for their associated data structure. 

The last step in the iterator implementation process is the declaration of the list iterator. This iterator is highly related to our class 
template List, for example, it is clear that the structural elements are class templates DataNode. The only ``open'' type is the one for 
the data. Once again, we use the template mechanism to provide list iterators for the different list types: 

  template <class T>
  class ListIterator : public Iterator<T, DataNode<T> *> {
  public:
    ListIterator(const List<T> &list) :
      Iterator<T, DataNode<T> *>(list._head) {}
    ListIterator(const ListIterator &val) :
      Iterator<T, DataNode<T> *>(val) {}

    virtual const T current() const { return _current->data(); }
    virtual void succ() { _current = _current->right(); }
    virtual const int terminate() const {
      return _current == NULL;
    }

    T &operator ++(int) {
        T &tmp = _current->data();
        succ();
        return tmp;
    }

    ListIterator &operator =(const ListIterator &val) {
      Iterator<T, DataNode<T> *>::operator =(val);
      return *this;
    }
  };

The class template ListIterator is derived from Iterator. The type of data is, of course, the type for which the list iterator is declared, 
hence, we insert placeholder T for the iterator's data type Data. The iteration process is achieved with help of the structural elements 

of type DataNode. Obviously the starting element is the head of the list _head which is of type DataNode T  *. We choose this 

type for the element type Element. 

Note that the list iterator actually hides the details about the structural elements. This type highly depends on the implementation of 
the list. For example, if we would have chosen an array implementation, we may have used integers as structural elements where the 
current element is indicated by an array index. 

The first constructor takes the list to traverse as its argument and initializes its iterator portion accordingly. As each ListIterator T



 is a friend of List T  it has access to the list's private members. We use this to initialize the iterator to point to the head of 

the list. 

We omit the destructor because we do not have any additional data members for the list iterator. Consequently, we do nothing 
special for it. However, the destructor of class template Iterator is called. Recall that we have to define this destructor to force 
derived classes to also have a virtual one. 

The next methods just define the required three properties. Now that we have structural elements defined as DataNode T  * we 

use them as follows: 

●     the current element is the data carried by the current structural element, 
●     the successor function is to set the current structural element to its right neighbour and 
●     the termination condition is to check the current structural element if it is the NULL pointer. Note that this can happen only 

in two cases: 
1. 

The list is empty. In this case the current element is already NULL because the list's head _head is NULL. 
2. 

The current element reached the last element. In this case the previous successor function call set the current 
element to the right neighbour of the last element which is NULL. 

We have also included an overloaded postincrement operator ``++''. To distinguish this operator from the preincrement operator, it 
takes an additional (anonymous) integer argument. As we only use this argument to declare a correct operator prototype and because 
we do not use the value of the argument, we omit the name of the argument. 

The last method is the overloaded assignment operator for list iterators. Similar to previous assignment operators, we just reuse 

already defined assignments of superclasses; Iterator T ::operator =() in this case. 

The other methods and operators, namely rewind(), operator ==() and operator !=() are all inherited from class template Iterator. 

10.6 Example Usage 

  The list template as introduced in previous sections can be used as follows: 

  int
  main() {
    List<int> list;
    int ix;

    for (ix = 0; ix < 10; ix++) list.append(ix);
    
    ListIterator<int> iter(list);
    while (!iter.terminate()) {
      printf("%d ", iter.current());
      iter.succ();
    }
    puts("");
    return 0;
  }

As we have defined a postincrement operator for the list iterator, the loop can also be written as: 

  while (!iter.terminate()) 
    print("%d ", iter++);



10.7 Discussion 

  

10.7.1 Separation of Shape and Access Strategies 

The presented example focusses on an object-oriented view. In real applications singly linked lists might offer more functionality. 
For example, insertion of new data items should be no problem due to the use of pointers: 

1. 
Take the successor pointer of the new element and set it to the element which should become its right neighbour, 

2. 
Take the successor pointer of the element after which the new element should be inserted and set it to the new element. 

Two simple operations. However, the problem is to designate the element after which the new element should be inserted. Again, a 
mechanism is needed which traverse through the list. This time, however, traversion stops at a particular element: It is the element 
where the list (or the data structure) is modified. 

Similar to the existence of different traversing strategies, one can think of different modification strategies. For example, to create a 
sorted list, where elements are sorted in ascending order, use an ascending modifier. 

These modifiers must have access to the list structural elements, and thus, they would be declared as friends as well. This would lead 
to the necessity that every modifier must be a friend of its data structure. But who can guarantee, that no modifier is forgotten? 

A solution is, that modification strategies are not implemented by ``external'' classes as iterators are. Instead, they are implemented 
by inheritance. If a sorted list is needed, it is a specialization of the general list. This sorted list would add a method, say insert(), 
which inserts a new element according to the modification strategy. 

To make this possible, the presented list template must be changed. Because now, derived classes must have access to the head and 
tail node to implement these strategies. Consequently, _head and _tail should be protected. 

10.7.2 Iterators 

The presented iterator implementation assumes, that the data structure is not changed during the use of an iterator. Consider the 
following example to illustrate this: 

  List<int> ilist;
  int ix;

  for (ix = 1; ix < 10; ix++) 
    ilist.append(ix);

  ListIterator<int> iter(ilist);

  while (!iter.terminate()) {
    printf("%d ", iter.current());
    iter.succ();
  }
  printf("\n");

  ilist.putInFront(0);

  iter.rewind();
  while (!iter.terminate()) {
    printf("%d ", iter.current());
    iter.succ();



  }
  printf("\n");

This code fragment prints 

  1 2 3 4 5 6 7 8 9
  1 2 3 4 5 6 7 8 9

instead of 

  1 2 3 4 5 6 7 8 9
  0 1 2 3 4 5 6 7 8 9

This is due to the fact, that our list iterator only stores pointers to the list structural elements. Thus, the start element _start is initially 
set to point to the location where the list's head node _head points to. This simply leads to two different pointers referencing the same 
location. Consequently, when changing one pointer as it is done by invoking putInFront() the other pointer is not affected. 

For that reason, when rewinding the iterator after putInFront() the current element is set to the start element which was set at the time 
the iterator constructor was called. Now, the start element actually references the second element of the list. 

10.8 Exercises 

  

1. 
Similar to the definition of the postincrement operator in class template ListIterator, one could define a preincrement 
operator as: 

          T &operator ++() {
            succ();
            return _current->data();
          }

What problems occur? 

2. 
Add the following method 

          int remove(const T &data);

to class template List. The method should delete the first occurrence of data in the list. The method should return 1 if it 
removed an element or 0 (zero) otherwise. 

What functionality must data provide? Remember that it can be of any type, especially user defined classes! 

3. 
Derive a class template CountedList from List which counts its elements. Add a method count() of arbitrary type which 
returns the actual number of elements stored in the list. Try to reuse as much of List as possible. 

4. 
Regarding the iterator problem discussed in section 10.7. What are possible solutions to allow the list to be altered while an 

iterator of it is in use? 
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A Solutions to the Exercises 

  This section presents example solutions to the exercises of the previous lectures. 

A.1 A Survey of Programming Techniques 

1. 
Discussion of module Singly-Linked-List-2. 
(a) 

Interface definition of module Integer-List 

   MODULE Integer-List

   DECLARE TYPE int_list_handle_t;

   int_list_handle_t int_list_create();
   BOOL    int_list_append(int_list_handle_t this,
                           int data);
   INTEGER int_list_getFirst(int_list_handle_t this);
   INTEGER int_list_getNext(int_list_handle_t this);
   BOOL    int_list_isEmpty(int_list_handle_t this);
   
   END Integer-List;

This representation introduces additional problems which are caused by not separating traversal from data 
structure. As you may recall, to iterate over the elements of the list, we have used a loop statement with the 
following condition: 

   WHILE data IS VALID DO

Data was initialized by a call to list_getFirst(). The integer list procedure int_list_getFirst() returns an integer, 
consequently, there is no such thing like an ``invalid integer'' which we could use for loop termination checking. 

2. 
Differences between object-oriented programming and other techniques. In object-oriented programming objects exchange 
messages with each other. In the other programming techniques, data is exchanged between procedures under control of a 
main program. Objects of the same kind but each with its own state can coexist. This contrasts the modular approach where 
each module only has one global state. 



A.2 Abstract Data Types 

1. 
ADT Integer. 
(a) 

Both operations add and sub can be applied for whatever value is hold by N. Thus, these operations can be 
applied at any time: There is no restriction to their use. However, you can describe this with a precondition 
which equals true. 

(b) 
We define three new operations as requested: mul, div and abs. The latter should return the absolute value of the 
integer. The operations are defined as follows: 

  mul(k)
  div(k)
  abs()

The operation mul does not require any precondition. That's similar to add and sub. The postcondition is of 
course res = N*k. The next operation div requires k to be not 0 (zero). Consequently, we define the following 
precondition: k not equal 0. The last operation abs returns the value of N if N is positive or 0 or -N if N is 
negative. Again it does not matter what value N has when this operation is applied. Here is its postcondition: 

if N >= 0 then 
abs = N 

else 
abs = -N 

2. 
ADT Fraction. 
(a) 

A simple fraction consists of numerator and denominator. Both are integer numbers. This is similar to the 
complex number example presented in the section. We could choose at least two data structures to hold the 
values: an array or a record. 

(b) 
Interface layout. Remember that the interface is just the set of operations viewable to the outside world. We 
could describe an interface of a fraction in a verbal manner. Consequently, we need operations: 

■     to get the value of nominator/denominator, 
■     to set the value of nominator/denominator, 
■     to add a fraction returning the sum, 
■     to subtract a fraction returning the difference, 
■     ... 

(c) 
Here are some axioms and preconditions for each fraction which also hold for the ADT: 

■     The denominator must not equal 0 (zero), otherwise the value of the fraction is not defined. 
■     If the nominator is 0 (zero) the value of the fraction is 0 for any value of the denominator. 
■     Each whole number can be represented by a fraction of which the nominator is the number and the 

denominator is 1. 

3. 
ADTs define properties of a set of instances. They provide an abstract view to these properties by providing a set of 
operations which can be applied on the instances. It is this set of operations, the interface, which defines properties of the 
instances. The use of an ADT is restricted by axioms and preconditions. Both define conditions and properties of an 
environment in which instances of the ADT can be used. 

4. 
We need to state axioms and to define preconditions to ensure the correct use of instances of ADTs. For example, if we do 
not declare 0 to be the neutral element of the addition of integers, there could be an ADT Integer which do something 



weird when adding 0 to N. This is not what is expected from an integer. Thus, axioms and preconditions provide a means 
to ensure that ADTs ``function'' as we wish them to. 

5. 
Description of relationships. 
(a) 

An instance is an actual representative of an ADT. It is thus an ``example'' of it. Where the ADT declare to use a 
``signed whole number'' as its data structure, an instance actually holds a value, say, ``-5''. 

(b) 
Generic ADTs define the same properties of their corresponding ADT. However, they are dedicated to another 
particular type. For example, the ADT List defines properties of lists. Thus, we might have an operation append
(elem) which appends a new element elem to the list. We do not say of what type elem actually is, just that it will 
be the last element of the list after this operation. If we now use a generic ADT List the type of this element is 
known: it's provided by the generic parameter. 

(c) 
Instances of the same generic ADT could be viewed as ``siblings''. They would be ``cousins'' of instances of 
another generic ADT if both generic ADTs share the same ADT. 

A.3 Object-Oriented Concepts 

1. 
Class. 
(a) 

A class is the actual implementation of an ADT. For example, an ADT for integers might include an operation 
set to set the value of its instance. This operation is implemented differently in languages such as C or Pascal. In 
C the equal sign ``='' defines the set operation for integers, whereas in Pascal the character string ``:='' is used. 
Consequently, classes implement operations by providing methods. Similarly, the data structure of the ADT is 
implemented by attributes of the class. 

(b) 
Class Complex 

  class Complex {
  attributes:
    Real real,
         imaginary

  methods:
    :=(Complex c)    /* Set value to the one of c */
    Real realPart()
    Real imaginaryPart()
    Complex +(Complex c)
    Complex -(Complex c)
    Complex /(Complex c)
    Complex *(Complex c)
  }

We choose the well-known operator symbols ``+'' for addition, ``-'' for subtraction, ``/'' for division and ``*'' for 
multiplication to implement the corresponding operations of the ADT Complex. Thus, objects of class Complex 
can be used like: 

  Complex c1, c2, c3
  c3 := c1 + c2

You may notice, that we could write the addition statement as follows: 

  c3 := c1.+(c2)



You may want to replace the ``+'' with ``add'' to come to a representation which we have used so far. However, 
you should be able to understand that ``+'' is nothing more than a different name for ``add''. 

2. 
Interacting objects. 

3. 
Object view. 

4. 
Messages. 
(a) 

Objects are autonomous entities which only provide a well-defined interface. We'd like to talk of objects as if 
they are active entities. For example, objects ``are responsible'' for themselves, ``they'' might deny invocation of 
a method, etc.. This distinguishes an object from a module, which is passive. Therefore, we don't speak of 
procedure calls. We speak of messages with which we ``ask'' an object to invoke one of its methods. 

(b) 
The Internet provides several objects. Two of the most well known ones are ``client'' and ``server''. For example, 
you use an FTP client (object) to access data stored on an FTP server (object). Thus, you could view this as if the 
client ``sends a message'' to the server asking for providing data stored there. 

(c) 
In the client/server environment we really have two remotely acting entities: the client and server process. 
Typically, these two entities exchange data in form of Internet messages. 

A.4 More Object-Oriented Concepts 

1. 
Inheritance. 
(a) 

Definition of class Rectangle: 

  class Rectangle inherits from Point {
  attributes:
    int _width,     // Width of rectangle
        _height     // Height of rectangle

  methods:
    setWidth(int newWidth)
    getWidth()
    setHeight(int newHeight)
    getHeight()
  }

In this example, we define a rectangle by its upper left corner (coordinates as inherited from Point) and its 
dimension. Alternatively, we could have defined it by its upper left and lower right corner. 

We add access methods for the rectangle's width and height. 

(b) 
3D objects. A sphere is defined by a center in 3D space and a radius. The center is a point in 3D space, thus, we 
can define class Sphere as: 

  class Sphere inherits from 3D-Point {
  attributes:
    int _radius;



  methods:
    setRadius(int newRadius)
    getRadius()
  }

This is similar to the circle class for 2D space. Now, 3D-Point is just a Point with an additional dimension: 

  class 3D-Point inherits from Point {
  attributes:
    int _z;

  methods:
    setZ(int newZ);
    getZ();
  }

Consequently, 3D-Point and Point are related with a is-a relationship. 

(c) 
Functionality of move(). move() as defined in the section allows 3D objects to move on the X-axis, thus only in 
one dimension. It does this, by modifying only the 2D part of 3D objects. This 2D part is defined by the Point 
class inherited directly or indirectly by 3D objects. 

(d) 
Inheritance graph (see Figure A.1). 

  
Figure A.1: Inheritance graph of some drawable objects.

(e) 
Alternative inheritance graph. In this example, class Sphere inherits from Circle and simply adds a third 
coordinate. This has the advantage that a sphere can be handled like a circle (for example, its radius can easily be 
modified by methods/functions which handle circles). It has the disadvantage, that it ``distributes'' the object's 
handle (the center point in 3D space) over the inheritance hierarchy: from Point over Circle to Sphere. Thus, this 
handle is not accessible as a whole. 



2. 
Multiple inheritance. The inheritance graph in Figure 5.9 obviously introduces naming conflicts by properties of class A. 

However, these properties are uniquely identified by following the path from D up to A. Thus, D can change properties of 
A inherited by B by following the inheritance path through B. Similarly, D can change properties of A inheritied by C by 
following the inheritance path through C. Consequently, this naming conflict does not necessarily lead to an error, as long 
as the paths are designated. 

A.5 More on C++ 

1. 
Polymorphism. When using the signature 

  void display(const DrawableObject obj);

First note, that in C++ function or method parameters are passed by value. Consequently, obj would be a copy of the actual 
provided function call argument. This means, that DrawableObject must be a class from which objects can be created. This 
is not the case, if DrawableObject is an abstract class (as it is when print() is defined as pure method.) 

If there exists a virtual method print() which is defined by class DrawableObject, then (as obj is only a copy of the actual 
argument) this method is invoked. It is not the method defined by the class of the actual argument (because it does no 
longer play any significant role!) 

A.6 The List - A Case Study 

1. 
Preincrement operator for iterators. The preincrement operator as defined in the exercise does not check for validity of 
_current. As succ() might set its value to NULL this may cause access to this NULL-pointer and, hence, might crash the 
program. A possible solution might be to define the operator as: 

T &operator ++() {
  succ();
  return(_current ? _current->data() : (T) 0);
}

However, this does not function as we now assume something about T. It must be possible to cast it to a kind of ,,NULL`` 
value. 

2. 
Addition of remove method. We don't give the code solution. Instead we give the algorithm. The method remove() must 
iterate over the list until it reaches an element with the requested data item. It then deletes this element and returns 1. If the 
list is empty or if the data item could not be found, it return 0 (zero). 

During the iteration, remove() must compare the provided data item successively with those in the list. Consequently, there 
might exist a comparison like: 

  if (data == current->data()) {
    // found the item
  }

Here we use the equation operator ,,==`` to compare both data items. As these items can be of any type, they especially can 
be objects of user defined classes. The question is: How is ,,equality`` defined for those new types? Consequently, to allow 
remove() to work properly, the list should only be used for types which define the comparison operator (namely, ,,==`` 
and ,,!=``) properly. Otherwise, default comparisons are used, which might lead to strange results. 



3. 
Class CountedList. A counted list is a list, which keeps track of the number of elements in it. Thus, when a data item is 
added, the number is incremented by one, when an item is deleted it is decremented by one. Again, we do not give the 
complete implementation, we rather show one method (append()) and how it is altered: 

  class CountedList : public List {
    int _count;    // The number of elements
    ...
  public:
    ...
    virtual void append(const T data) {
      _count++;    // Increment it and ...
      List::append(data); // ... use list append
    }
    ...
  }

Not every method can be implemented this way. In some methods, one must check whether _count needs to be altered or 
not. However, the main idea is, that each list method is just expanded (or specialized) for the counted list. 

4. 
Iterator problem. To solve the iterator problem one could think of a solution, where the iterator stores a reference to its 
corresponding list. At iterator creation time, this reference is then initialized to reference the provided list. The iterator 
methods must then be modified to use this reference instead of the pointer _start. 
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...calls 
We don't regard parallelism here. 
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...it 
Not all real languages provide such a type. In C this can be emulated with pointers. 
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...language 
You might ask, why we should declare an Integer class if there is already an integer type available. We come back to this 
when we talk about inheritance. 
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...[2] 

This book is only available in German. However, since this is one of the best books about object-oriented programming I 
know of, I decided to cite it here. 
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...point 
We use lowercase letters when we talk at the object level. 
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...characters 
Don't argue whether such a method makes really sense or not. It is just introduced for illustrating purposes. 
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...parenthesis 
This is due to a historical ``accident'' while developing C [5]. 
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...object 
In the following we will drop the word ``object'' and will speak of ``the point''. 
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...languages 
This is due to the fact that C++ supports function polymorphism. Therefore the name mangling must take function 
parameters into account. 
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This also creates an intermediary preprocessed raw C++ file. A typical suffix is .i. 
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...files 
This has nothing to do with objects in the object-oriented sense. 
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...libraries 
For example, standard functions such as printf() are provided this way. 
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...templates 
C++ also allows the definition of function templates. However, as we do not use them, we will not explain them any 
further. 
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...lists 
Do not mix up this use of ``class'' with the ``class definition'' used before. Here we mean with ``class'' a set of class 
definitions which share some common properties, or a ``class of classes''. 
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